AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy

Hai Huang1,§Xiaorong Yang1,§Huili Li1Hansi Lu1James Oswald2Yongmei Liu1Jun Zeng1Chaohui Jin1Xingchen Peng1Jiyan Liu1Xiangrong Song1( )
Outpatient Department, Department of Critical Care Medicine, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
School of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

§ Hai Huang and Xiaorong Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Ocular drug delivery remains a significant challenge that is limited by poor corneal retention and permeation, resulting in low ocular bioavailability (< 5%). Worse still, the most convenient and safe route of ocular drug administration, topical administration results in a drug bioavailability of less than 1%. iRGD modified drug delivery strategies have been developed for cancer therapy, however active targeting iRGD platforms for ocular drug delivery have yet to be explored. Herein, an iRGD modified liposomes was developed for ocular drug delivery via topical administration. The results indicated that iRGD modified liposomes could prolong the corneal retention time and enhance corneal permeability in an iRGD receptor mediated manner. These findings provided a novel strategy for topical ocular drug delivery for the treatment of posterior ocular diseases.

References

[1]
Gaudana, R.; Ananthula, H. K.; Parenky, A.; Mitra, A. K. Ocular drug delivery. AAPS J. 2010, 12, 348-360.
[2]
Seyfoddin, A.; Shaw, J.; Al-Kassas, R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010, 17, 467-489.
[3]
Taghe, S.; Mirzaeei, S. Preparation and characterization of novel, mucoadhesive ofloxacin nanoparticles for ocular drug delivery. Braz. J. Pharm. Sci. 2019, 55, e17105.
[4]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A. K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47-64.
[5]
Wang, Y. Y.; Xu, X. Y.; Gu, Y.; Cheng, Y. J.; Cao, F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv. 2018, 15, 687-701.
[6]
Thrimawithana, T. R.; Young, S.; Bunt, C. R.; Green, C.; Alany, R. G. Drug delivery to the posterior segment of the eye. Drug Discov. Today 2011, 16, 270-277.
[7]
Zhang, W. S.; Prausnitz, M. R.; Edwards, A. Model of transient drug diffusion across cornea. J. Control. Release 2004, 99, 241-258.
[8]
Bucolo, C.; Drago, F.; Salomone, S. Ocular drug delivery: A clue from nanotechnology. Front. Pharmacol. 2012, 3, 188.
[9]
Lang, J. Y.; Zhao, X.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Ding, Y. P.; Guan, J. J.; Ji, T. J.; Zhao, Y.; Nie, G. J. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano 2019, 13, 12357-12371.
[10]
Weldon, C.; Ji, T. J.; Nguyen, M. T.; Rwei, A.; Wang, W. P.; Hao, Y.; Zhao, C.; Mehta, M.; Wang, B. Y.; Tsui, J. et al. Nanoscale bupivacaine formulations to enhance the duration and safety of intravenous regional anesthesia. ACS Nano 2019, 13, 18-25.
[11]
Ji, T. J.; Lang, J. Y.; Wang, J.; Cai, R.; Zhang, Y. L.; Qi, F. F.; Zhang, L. J.; Zhao, X.; Wu, W. J.; Hao, J. H. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 2017, 11, 8668-8678.
[12]
Zhou, H. Y.; Hao, J. L.; Wang, S.; Zheng, Y.; Zhang, W. S. Nanoparticles in the ocular drug delivery. Int. J. Ophthalmol. 2013, 6, 390-396.
[13]
Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharmacol. 2012, 9, 2961-2973.
[14]
Park, J.; Singha, K.; Son, S.; Kim, J.; Namgung, R.; Yun, C. O.; Kim, W. J. A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy. Cancer Gene Ther. 2012, 19, 741-748.
[15]
Liu, Z. F.; Wang, F.; Chen, X. Y. Integrin αvβ3-targeted cancer therapy. Drug Dev. Res. 2008, 69, 329-339.
[16]
Tocce, E. J.; Broderick, A. H.; Murphy, K. C.; Liliensiek, S. J.; Murphy, C. J.; Lynn, D. M.; Nealey, P. F. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions. J. Biomed. Mater. Res., Part A 2012, 100, 84-93.
[17]
Chu, Y. C.; Chen, N.; Yu, H. J.; Mu, H. J.; He, B.; Hua, H. C.; Wang, A. P.; Sun, K. X. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide- modified nanoparticles. Int. J. Nanomed. 2017, 12, 1353-1368.
[18]
Lu, J.; Shi, M.; Shoichet, M. S. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjugate Chem. 2009, 20, 87-94.
[19]
Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA 2009, 106, 16157-16162.
[20]
Cvetkovic, R. S.; Perry, C. M. Brinzolamide: A review of its use in the management of primary open-angle glaucoma and ocular hypertension. Drugs Aging 2003, 20, 919-947.
[21]
Bao, X. T.; Zeng, J.; Huang, H.; Ma, C. C.; Wang, L.; Wang, F. Z.; Liao, X. L.; Song, X. R. Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int. J. Pharm. 2020, 576, 118999.
[22]
Li, H. L.; Liu, Y. M.; Zhang, Y.; Fang, D. L.; Xu, B.; Zhang, L. J.; Chen, T.; Ren, K.; Nie, Y.; Yao, S. H. et al. Liposomes as a novel ocular delivery system for brinzolamide: In vitro and in vivo studies. AAPS PharmSciTech 2016, 17, 710-717.
[23]
Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D. F.; Eperjesi, F.; Liu, J. P.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today 2013, 18, 290-297.
[24]
Du, X. J.; Wang, J. L.; Liu, W. W.; Yang, J. X.; Sun, C. Y.; Sun, R.; Li, H. J.; Shen, S.; Luo, Y. L.; Ye, X. D. et al. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 2015, 69, 1-11.
[25]
Chen, C. W.; Lu, D. W.; Yeh, M. K.; Shiau, C. Y.; Chiang, C. H. Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int. J. Nanomed. 2011, 6, 2567-2580.
Nano Research
Pages 3105-3109
Cite this article:
Huang H, Yang X, Li H, et al. iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy. Nano Research, 2020, 13(11): 3105-3109. https://doi.org/10.1007/s12274-020-2980-9
Topics:

871

Views

27

Crossref

N/A

Web of Science

27

Scopus

2

CSCD

Altmetrics

Received: 19 January 2020
Revised: 09 July 2020
Accepted: 10 July 2020
Published: 11 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return