Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Ultra-stable K metal anode enabled by oxygen-rich carbon cloth

Yangyang Xie1Junxian Hu1Zexun Han1Hailin Fan2Jingyu Xu1Yanqing Lai1Zhian Zhang1()
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Contemporary Amperex Technology Co., Ltd., Ningde 352100, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The K metal batteries are emerged as promising alternatives beyond commercialized Li-ion batteries. However, suppressing uncontrolled dendrite is crucial to the accomplishment of K metal batteries. Herein, an oxygen-rich treated carbon cloth (TCC) has been designed as the K plating host to guide K homogeneous nucleation and suppress the dendrite growth. Both density function theory calculations and experimental results demonstrate that abundant oxygen functional groups as K-philic sites on TCC can guide K nucleation and deposition homogeneously. As a result, the TCC electrode exhibits an ultra-long-life over 800 cycles at high current density of 3.0 mA·cm-2 for 3.0 mA·h·cm-2. Furthermore, the symmetrical cells can run stably for 2,000 h with low over-potential less than 20 mV at 1.0 mA·cm-2 for 1.0 mA·h·cm-2. Even at a higher current of 5.0 mA·cm-2, the TCC electrode can still stably cycle for 1,400 h.

Electronic Supplementary Material

Download File(s)
12274_2020_2984_MOESM1_ESM.pdf (3 MB)

References

[1]
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, 3, 267-278.
[2]
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.
[3]
Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172-175.
[4]
Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Interfaces 2017, 9, 4404-4419.
[5]
Xiao, N.; Ren, X. D.; McCulloch, W. D.; Gourdin, G.; Wu, Y. Y. Potassium superoxide: A unique alternative for metal-air batteries. Acc. Chem. Res. 2018, 51, 2335-2343.
[6]
Pandey, A.; Prasad, A.; Moscatello, J. P.; Engelhard, M.; Wang, C. M.; Yap, Y. K. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 2013, 7, 117-125.
[7]
Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.
[8]
Lei, Y.; Qin, L.; Liu, R. L.; Lau, K. C.; Wu, Y. Y.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Exploring stability of nonaqueous electrolytes for potassium- ion batteries. ACS Appl. Energy Mater. 2018, 1, 1828-1833.
[9]
Li, Y. Q.; Zhang, L. Y.; Liu, S. F.; Wang, X. L.; Xie, D.; Xia, X. H.; Gu, C. D.; Tu, J. P. Original growth mechanism for ultra-stable dendrite- free potassium metal electrode. Nano Energy 2019, 62, 367-375.
[10]
Xiao, N.; McCulloch, W. D.; Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 2017, 139, 9475-9478.
[11]
Wang, H. W.; Hu, J. Y.; Dong, J. H.; Lau, C. K.; Qin, L.; Lei, Y.; Li, B. H.; Zhai, D. Y.; Wu, Y. Y.; Kang, F. Y. Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv. Energy Mater. 2019, 9, 1902697.
[12]
Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W; Zheng, M. S.; Wu, D. Y.; Fan, C. H.; Hu, W. Q. et al. Designable ultra- smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun. 2018, 9, 1339.
[13]
Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578-45585.
[14]
Hwang, J. Y.; Kim, H. M.; Yoon, C. S.; Sun, Y. K. Toward high- safety potassium-sulfur batteries using a potassium polysulfide catholyte and metal-free anode. ACS Energy Lett. 2018, 3, 540-541.
[15]
Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. X. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.
[16]
Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.
[17]
Hong, B.; Fan, H. L.; Cheng, X. B.; Yan, X. L.; Hong, S.; Dong, Q. Y.; Gao, C. H.; Zhang, Z. A.; Lai, Y. Q.; Zhang, Q. Spatially uniform deposition of lithium metal in 3D janus hosts. Energy Storage Mater. 2019, 16, 259-266.
[18]
Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.
[19]
Xiong, W. S.; Jiang, Y.; Xia, Y.; Qi, Y. Y.; Sun, W. W.; He, D.; Liu, Y. M; Zhao, X. Z. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chem. Commun. 2018, 54, 9406-9409.
[20]
Xiao, N.; Gourdin, G.; Wu, Y. Y. Simultaneous stabilization of potassium metal and superoxide in K-O2 batteries on the basis of electrolyte reactivity. Angew. Chem., Int. Ed. 2018, 57, 10864-10867.
[21]
Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem. Commun. 2018, 54, 8387-8390.
[22]
Xie, Y. Y.; Hu, J. X.; Han, Z. X.; Wang, T. S.; Zheng, J. Q.; Gan, L.; Lai, Y. Q.; Zhang, Z. A. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 2020, 30, 1-8.
[23]
Xie, Y. Y.; Hu, J. X.; Zhang, Z. A. A stable carbon host engineering surface defects for room-temperature liquid Na-K anode. J. Electroanal. Chem. 2020, 856, 113676.
[24]
Qin, L.; Yang, W.; Lv, W.; Liu, L.; Lei. Y.; Yu, W.; Kang, F. Y.; Kim, J. K.; Zhai, D. Y.; Yang, Q. H. Room-temperature liquid metal- based anodes for high-energy potassium-based electrochemical devices. Chem. Commun. 2018, 54, 8032-8035.
[25]
Xue, L. G.; Zhou, W. D.; Xin, S.; Gao, H. C.; Li, Y. T.; Zhou, A. J.; Goodenough, J. B. Room-temperature liquid Na-K anode membranes. Angew. Chem., Int. Ed. 2018, 130, 14184-14187.
[26]
Wu, Y. P.; Huang, L.; Huang, X. K.; Guo, X. R.; Liu, D.; Zheng, D.; Zhang, X. L.; Ren, R.; Qu, D. Y.; Chen, J. H. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 2017, 10, 1854-1861.
[27]
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 2002, 14, 2717-2744.
[28]
Clark, S. J.; Segall, M. D,; Pickard, C. J; Hasnip, P. J.; Probert, M. I. J.; Refson, K. P.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystall. Mater. 2005, 220, 567-570.
[29]
John, P. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[30]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[31]
Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 2019, 19, 1504-1511.
[32]
Zheng, Z. J.; Zeng, X. X.; Ye, H.; Cao, F. F.; Wang, Z. B. Nitrogen and oxygen co-doped graphitized carbon fibers with sodiophilic- rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium- metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 30417-30425.
[33]
Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen- doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790-1798.
[34]
Sha, J. J.; Dai, J. X.; Li, J.; Wei, Z. Q.; Hausherr, J. M.; Krenkel, W. Influence of thermal treatment on thermo-mechanical stability and surface composition of carbon fiber. Appl. Surf. Sci. 2013, 274, 89-94.
[35]
Qiu, W. D.; Xiao, H. B.; Li, Y.; Lu, X. H.; Tong, Y. X. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small, 2019, 15, 1901285.
[36]
Zhang, L. Y.; Peng, S. S.; Ding, Y.; Guo, X. L.; Qian, Y. M; Celio, H.; He, G. H.; Yu, G. H. A graphite intercalation compound associated with liquid Na-K towards ultra-stable and high-capacity alkali metal anodes. Energy Environ. Sci. 2019, 12, 1989-1998.
[37]
Hundekar, P.; Basu, S.; Fan, X. L.; Li, L.; Yoshimura, A.; Gupta, T.; Sarbada, V.; Lakhnot, A.; Jain, R.; Narayanan, S. et al. In situ healing of dendrites in a potassium metal battery. Proc. Natl. Acad. Sci. USA 2020, 117, 5588-5594.
[38]
Fan, H. L.; Gao, C. H.; Jiang, H.; Dong, Q. Y.; Hong, B.; Lai, Y. Q. A systematical study on the electrodeposition process of metallic lithium. J. Energy Chem. 2020, 49, 59-70.
Nano Research
Pages 3137-3141
Cite this article:
Xie Y, Hu J, Han Z, et al. Ultra-stable K metal anode enabled by oxygen-rich carbon cloth. Nano Research, 2020, 13(11): 3137-3141. https://doi.org/10.1007/s12274-020-2984-5
Topics:
Metrics & Citations  
Article History
Copyright
Return