AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-stable K metal anode enabled by oxygen-rich carbon cloth

Yangyang Xie1Junxian Hu1Zexun Han1Hailin Fan2Jingyu Xu1Yanqing Lai1Zhian Zhang1( )
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Contemporary Amperex Technology Co., Ltd., Ningde 352100, China
Show Author Information

Graphical Abstract

Abstract

The K metal batteries are emerged as promising alternatives beyond commercialized Li-ion batteries. However, suppressing uncontrolled dendrite is crucial to the accomplishment of K metal batteries. Herein, an oxygen-rich treated carbon cloth (TCC) has been designed as the K plating host to guide K homogeneous nucleation and suppress the dendrite growth. Both density function theory calculations and experimental results demonstrate that abundant oxygen functional groups as K-philic sites on TCC can guide K nucleation and deposition homogeneously. As a result, the TCC electrode exhibits an ultra-long-life over 800 cycles at high current density of 3.0 mA·cm-2 for 3.0 mA·h·cm-2. Furthermore, the symmetrical cells can run stably for 2,000 h with low over-potential less than 20 mV at 1.0 mA·cm-2 for 1.0 mA·h·cm-2. Even at a higher current of 5.0 mA·cm-2, the TCC electrode can still stably cycle for 1,400 h.

Electronic Supplementary Material

Download File(s)
12274_2020_2984_MOESM1_ESM.pdf (3 MB)

References

[1]
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, 3, 267-278.
[2]
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.
[3]
Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172-175.
[4]
Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Interfaces 2017, 9, 4404-4419.
[5]
Xiao, N.; Ren, X. D.; McCulloch, W. D.; Gourdin, G.; Wu, Y. Y. Potassium superoxide: A unique alternative for metal-air batteries. Acc. Chem. Res. 2018, 51, 2335-2343.
[6]
Pandey, A.; Prasad, A.; Moscatello, J. P.; Engelhard, M.; Wang, C. M.; Yap, Y. K. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 2013, 7, 117-125.
[7]
Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.
[8]
Lei, Y.; Qin, L.; Liu, R. L.; Lau, K. C.; Wu, Y. Y.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Exploring stability of nonaqueous electrolytes for potassium- ion batteries. ACS Appl. Energy Mater. 2018, 1, 1828-1833.
[9]
Li, Y. Q.; Zhang, L. Y.; Liu, S. F.; Wang, X. L.; Xie, D.; Xia, X. H.; Gu, C. D.; Tu, J. P. Original growth mechanism for ultra-stable dendrite- free potassium metal electrode. Nano Energy 2019, 62, 367-375.
[10]
Xiao, N.; McCulloch, W. D.; Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 2017, 139, 9475-9478.
[11]
Wang, H. W.; Hu, J. Y.; Dong, J. H.; Lau, C. K.; Qin, L.; Lei, Y.; Li, B. H.; Zhai, D. Y.; Wu, Y. Y.; Kang, F. Y. Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv. Energy Mater. 2019, 9, 1902697.
[12]
Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W; Zheng, M. S.; Wu, D. Y.; Fan, C. H.; Hu, W. Q. et al. Designable ultra- smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun. 2018, 9, 1339.
[13]
Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578-45585.
[14]
Hwang, J. Y.; Kim, H. M.; Yoon, C. S.; Sun, Y. K. Toward high- safety potassium-sulfur batteries using a potassium polysulfide catholyte and metal-free anode. ACS Energy Lett. 2018, 3, 540-541.
[15]
Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. X. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.
[16]
Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.
[17]
Hong, B.; Fan, H. L.; Cheng, X. B.; Yan, X. L.; Hong, S.; Dong, Q. Y.; Gao, C. H.; Zhang, Z. A.; Lai, Y. Q.; Zhang, Q. Spatially uniform deposition of lithium metal in 3D janus hosts. Energy Storage Mater. 2019, 16, 259-266.
[18]
Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.
[19]
Xiong, W. S.; Jiang, Y.; Xia, Y.; Qi, Y. Y.; Sun, W. W.; He, D.; Liu, Y. M; Zhao, X. Z. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chem. Commun. 2018, 54, 9406-9409.
[20]
Xiao, N.; Gourdin, G.; Wu, Y. Y. Simultaneous stabilization of potassium metal and superoxide in K-O2 batteries on the basis of electrolyte reactivity. Angew. Chem., Int. Ed. 2018, 57, 10864-10867.
[21]
Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem. Commun. 2018, 54, 8387-8390.
[22]
Xie, Y. Y.; Hu, J. X.; Han, Z. X.; Wang, T. S.; Zheng, J. Q.; Gan, L.; Lai, Y. Q.; Zhang, Z. A. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 2020, 30, 1-8.
[23]
Xie, Y. Y.; Hu, J. X.; Zhang, Z. A. A stable carbon host engineering surface defects for room-temperature liquid Na-K anode. J. Electroanal. Chem. 2020, 856, 113676.
[24]
Qin, L.; Yang, W.; Lv, W.; Liu, L.; Lei. Y.; Yu, W.; Kang, F. Y.; Kim, J. K.; Zhai, D. Y.; Yang, Q. H. Room-temperature liquid metal- based anodes for high-energy potassium-based electrochemical devices. Chem. Commun. 2018, 54, 8032-8035.
[25]
Xue, L. G.; Zhou, W. D.; Xin, S.; Gao, H. C.; Li, Y. T.; Zhou, A. J.; Goodenough, J. B. Room-temperature liquid Na-K anode membranes. Angew. Chem., Int. Ed. 2018, 130, 14184-14187.
[26]
Wu, Y. P.; Huang, L.; Huang, X. K.; Guo, X. R.; Liu, D.; Zheng, D.; Zhang, X. L.; Ren, R.; Qu, D. Y.; Chen, J. H. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 2017, 10, 1854-1861.
[27]
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 2002, 14, 2717-2744.
[28]
Clark, S. J.; Segall, M. D,; Pickard, C. J; Hasnip, P. J.; Probert, M. I. J.; Refson, K. P.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystall. Mater. 2005, 220, 567-570.
[29]
John, P. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[30]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[31]
Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 2019, 19, 1504-1511.
[32]
Zheng, Z. J.; Zeng, X. X.; Ye, H.; Cao, F. F.; Wang, Z. B. Nitrogen and oxygen co-doped graphitized carbon fibers with sodiophilic- rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium- metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 30417-30425.
[33]
Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen- doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790-1798.
[34]
Sha, J. J.; Dai, J. X.; Li, J.; Wei, Z. Q.; Hausherr, J. M.; Krenkel, W. Influence of thermal treatment on thermo-mechanical stability and surface composition of carbon fiber. Appl. Surf. Sci. 2013, 274, 89-94.
[35]
Qiu, W. D.; Xiao, H. B.; Li, Y.; Lu, X. H.; Tong, Y. X. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small, 2019, 15, 1901285.
[36]
Zhang, L. Y.; Peng, S. S.; Ding, Y.; Guo, X. L.; Qian, Y. M; Celio, H.; He, G. H.; Yu, G. H. A graphite intercalation compound associated with liquid Na-K towards ultra-stable and high-capacity alkali metal anodes. Energy Environ. Sci. 2019, 12, 1989-1998.
[37]
Hundekar, P.; Basu, S.; Fan, X. L.; Li, L.; Yoshimura, A.; Gupta, T.; Sarbada, V.; Lakhnot, A.; Jain, R.; Narayanan, S. et al. In situ healing of dendrites in a potassium metal battery. Proc. Natl. Acad. Sci. USA 2020, 117, 5588-5594.
[38]
Fan, H. L.; Gao, C. H.; Jiang, H.; Dong, Q. Y.; Hong, B.; Lai, Y. Q. A systematical study on the electrodeposition process of metallic lithium. J. Energy Chem. 2020, 49, 59-70.
Nano Research
Pages 3137-3141
Cite this article:
Xie Y, Hu J, Han Z, et al. Ultra-stable K metal anode enabled by oxygen-rich carbon cloth. Nano Research, 2020, 13(11): 3137-3141. https://doi.org/10.1007/s12274-020-2984-5
Topics:

695

Views

28

Crossref

N/A

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 14 May 2020
Revised: 02 July 2020
Accepted: 10 July 2020
Published: 25 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return