AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in nanomaterials for sonodynamic therapy

Ting Xu1Shaojing Zhao1Changwei Lin2( )Xiuli Zheng3( )Minhuan Lan1( )
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Department of Gastrointestinal surgery, The Third XiangYa Hospital of Central South University, Changsha 410013, China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Sonodynamic therapy (SDT), as a novel non-invasive strategy for eliminating tumor, has the advantages of deeper tissue penetration, fewer side effects, and better patient compliance, compared with photodynamic therapy (PDT). In SDT, ultrasound was used to activate sonosensitizer to produce cytotoxic reactive oxygen species (ROS), induce the collapse of vacuoles in solution, and bring about irreversible damage to cancer cells. In recent years, much effort has been devoted to developing highly efficient sonosensitizers which can efficiently generate ROS. However, the traditional organic sonosensitizers, such as porphyrins, hypericin, and curcumins, suffer from complex synthesis, poor water solubility, and low tumor targeting efficacy which limit the benefits of SDT. In contrast, inorganic sonosensitizers show good in vivo stability, controllable physicochemical properties, ease of achieving multifunctionality, and high tumor targeting, which greatly expanded their application in SDT. In this review, we systematically summarize the nanomaterials which act as the carrier of molecular sonosensitizers, and directly produce ROS under ultrasound. Moreover, the prospects of inorganic nanomaterials for SDT application are also discussed.

References

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2018, 68, 394-424.
[2]
Chen, W. Q.; Zheng, R. S.; Baade, P. D.; Zhang, S. W.; Zeng, H. M.; Bray, F.; Jemal, A.; Yu, X. Q.; He, J. Cancer statistics in China, 2015. CA: Cancer J. Clin. 2016, 66, 115-132.
[3]
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2017. CA: Cancer J. Clin. 2017, 67, 7-30.
[4]
Wyld, L.; Audisio, R. A.; Poston, G. J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol. 2015, 12, 115-124.
[5]
Moran, M. S. Radiation therapy in the locoregional treatment of triple-negative breast cancer. Lancet Oncol. 2015, 16, e113-e122.
[6]
Ray, A.; Das, D. S.; Song, Y.; Hideshima, T.; Tai, Y. T.; Chauhan, D.; Anderson, K. C. Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia 2018, 32, 843-846.
[7]
Deng, G. L.; Zeng, S.; Shen, H. Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J. Hepatol. 2015, 7, 787-798.
[8]
Nguyen, V. D.; Min, H. K.; Kim, C. S.; Han, J.; Park, J. O.; Choi, E. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf. B 2019, 173, 539-548.
[9]
Wang, J.; Xu, D. J.; Deng, T.; Li, Y. Y.; Xue, L.; Yan, T.; Huang, D. C.; Deng, D. W. Self-decomposable mesoporous doxorubicin@silica nanocomposites for nuclear targeted chemo-photodynamic combination therapy. ACS Appl. Mater. Interfaces 2018, 1, 1976-1984.
[10]
Shen, S.; Guo, X. M.; Wu, L.; Wang, M.; Wang, X. S.; Kong, F. F.; Shen, H. J.; Xie, M.; Ge, Y. R.; Jin, Y. Dual-core@shell-structured Fe3O4-NaYF4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J. Mater. Chem. B 2014, 2, 5775-5784.
[11]
Ge, J. C.; Lan, M. H; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
[12]
Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566-13638.
[13]
Lan, M. H.; Zhao, S. J.; Xie, Y. S.; Zhao, J. F.; Guo, L.; Niu, G. L.; Li, Y.; Sun, H. Y.; Zhang, H. Y.; Liu, W. M. et al. Water-soluble polythiophene for two-photon excitation fluorescence imaging and photodynamic therapy of cancer. ACS Appl. Mater. Interfaces 2017, 9, 14590-14595.
[14]
Monro, S.; Colón, K. L.; Yin, H.; Roque III, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G.; McFarland, S. A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019, 119, 797-828.
[15]
Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488-6519.
[16]
Lan, M. H.; Zhao, S. J.; Liu, W. M.; Lee, C. S.; Zhang, W. J.; Wang, P. F. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 2019, 8, 1900132.
[17]
MacDonald, I. J.; Dougherty, T. J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 2001, 5, 105-129.
[18]
Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.
[19]
Wilson, B. C. Photodynamic therapy for cancer: Principles. Can. J. Gastroenterol. 2002, 16, 743109.
[20]
Wang, P. Y.; Wang, X. D.; Luo, Q.; Li, Y.; Lin, X. X.; Fan, L. L.; Zhang, Y.; Liu, J. F.; Liu, X. L. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics 2019, 9, 369-380.
[21]
Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145-6154.
[22]
Zhang, J. Y.; Chen, S.; Wang, P.; Jiang, D. J.; Ban, D. X.; Zhong, N. Z.; Jiang, G. C.; Li, H.; Hu, Z.; Xiao, J. R. et al. NaYbF4 nanoparticles as near infrared light excited inorganic photosensitizers for deep penetration in photodynamic therapy. Nanoscale 2017, 9, 2706-2710.
[23]
Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. J. Cancer Res. 1989, 80, 219-222.
[24]
Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180. Jpn. J. Cancer Res. 1990, 81, 304-308.
[25]
Umemura, S.; Yumita, N.; Nishigaki, R.; Umemura, K. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn. J. Cancer Res. 1990, 81, 962-966.
[26]
Umemura, S.; Yumita, N.; Nishigaki, R. Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70. Jpn. J. Cancer Res. 1993, 84, 582-588.
[27]
Yue, W. W.; Chen, L.; Yu, L. D.; Zhou, B. G.; Yin, H. H.; Ren, W. W.; Liu, C.; Guo, L. H.; Zhang, Y. F.; Sun, L. P. et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 2019, 10, 2025.
[28]
Wang, L.; Hu, Y. J.; Hao, Y. W.; Li, L.; Zheng, C. X.; Zhao, H. J.; Niu, M. Y.; Yin, Y. Y.; Zhang, Z. Z; Zhang, Y. Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy. J. Control. Release 2018, 286, 74-84.
[29]
Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K. et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016, 16, 6257-6264.
[30]
Liu, Y.; Wan, G. Y.; Guo, H.; Liu, Y. Y.; Zhou, P.; Wang, H. M.; Wang, D.; Zhang, S. P.; Wang Y. S.; Zhang, N. A multifunctional nanoparticle system combines sonodynamic therapy and chemotherapy to treat hepatocellular carcinoma. Nano Res. 2017, 10, 834-855.
[31]
Dai, C.; Zhang, S. J.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017, 11, 9467-9480.
[32]
Huang, P.; Qian, X. Q.; Chen, Y.; Yu, L. D.; Lin, H.; Wane, L. Y.; Zhu, Y. F.; Shi, J. L. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 2017, 139, 1275-1284.
[33]
Pan, X. T.; Wang, H. Y.; Wang, S. H.; Sun, X.; Wang, L. J.; Wang, W. W.; Shen, H. Y.; Liu, H. Y. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci China Life Sci. 2018, 61, 415-426.
[34]
Bogdan, J.; Plawińska-Czarnak, J.; Zarzyńska, J. Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: A review. Nanoscale Res. Lett. 2017, 12, 225.
[35]
Cavalli, R.; Marano, F.; Argenziano, M.; Varese, A.; Frairia, R.; Catalano, M. G. Combining drug-loaded nanobubbles and extracorporeal shock waves for difficult-to-treat cancers. Curr. Drug Deliv. 2018, 15, 752-754.
[36]
Chen, H. J.; Zhou, X. B.; Gao, Y.; Zheng, B. Y.; Tang, F. X.; Huang, J. D. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today 2014, 19, 502-509.
[37]
Liu, R. G.; Zhang, Q. Y.; Lang, Y. H.; Peng, Z. Z.; Li, L. B. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagn. Photodyn. Ther. 2017, 19, 159-166.
[38]
Rosenthal, I.; Sostaric, J. Z.; Riesz, P. Sonodynamic therapy—A review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 2004, 11, 349-363.
[39]
Pecha, R.; Gompf, B. Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 2000, 84, 1328-1330.
[40]
Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.
[41]
Xu, J.; Xia, X. S.; Leung, A. W.; Xiang, J. Y.; Jiang, Y.; Yu, H. P.; Bai, D. Q.; Li, X. H.; Xu, C. S. Sonodynamic action of pyropheophorbide—A methyl ester induces mitochondrial damage in liver cancer cells. Ultrasonics 2011, 51, 480-484.
[42]
Pang, X.; Xu, C. S.; Jiang, Y.; Xiao, Q. C.; Leung, A. W. Natural products in the discovery of novel sonosensitizers. Pharmacol. Ther. 2016, 162, 144-151.
[43]
Jin, H.; Zhong, X.; Wang, Z. Y.; Huang, X.; Ye, H. Y.; Ma, S. Y.; Chen, Y.; Cai, J. Y. Sonodynamic effects of hematoporphyrin monomethyl ether on CNE-2 cells detected by atomic force microscopy. J. Cell. Biochem. 2011, 112, 169-178.
[44]
Qian, J. L.; Gao, Q. P. Sonodynamic therapy mediated by emodin induces the oxidation of microtubules to facilitate the sonodynamic effect. Ultrasound Med. Biol. 2018, 44, 853-860.
[45]
Didenko, Y. T.; Suslick, K. S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 2002, 418, 394-397.
[46]
Wu, J. R.; Nyborg, W. L. Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 2008, 60, 1103-1116.
[47]
Hirschberg, H.; Madsen, S. J. Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: A review. Ther. Deliv. 2017, 8, 331-342.
[48]
Yumita, N.; Iwase, Y.; Nishi, K.; Komatsu, H.; Takeda, K.; Onodera, K.; Fukai, T.; Ikeda, T.; Umemura, S.; Okudaira, K. et al. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics 2012, 2, 880-888.
[49]
Chen, B.; Zheng, R. N.; Liu, D.; Li, B. F.; Lin, J. R.; Zhang, W. M. The tumor affinity of chlorin e6 and its sonodynamic effects on non-small cell lung cancer. Ultrason. Sonochem. 2013, 20, 667-673.
[50]
Osaki, T.; Yokoe, I.; Uto, Y.; Ishizuka, M.; Tanaka, T.; Yamanaka, N.; Kurahashi, T.; Azuma, K.; Murahata, Y.; Tsuka, T. et al. Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrason. Sonochem. 2016, 28, 161-168.
[51]
Zhang, H. J.; Liu, X.; Liu, Y. B.; Wu, Y.; Li, H. X.; Zhao, C. B.; Li, H. Z.; Meng, Q. G.; Li, W. Effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on hypertrophic scarring. PLoS One 2014, 9, e86003.
[52]
Vargas, A.; Pegaz, B.; Debefve, E.; Konan-Kouakou, Y.; Lange, N.; Ballini, J. P.; van den Bergh, H.; Gurny, R.; Delie, F. Improved photodynamic activity of porphyrin loaded into nanoparticles: An in vivo evaluation using chick embryos. Int. J. Pharm. 2004, 286, 131-145.
[53]
Zhao, X.; Liu, Q. H.; Tang, W.; Wang, X. B.; Wang, P.; Gong, L. Y.; Wang, Y. Damage effects of protoporphyrin IX—Sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells. Ultrason. Sonochem. 2009, 16, 50-56.
[54]
Qian, X. Q.; Zheng, Y. Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater. 2016, 28, 8097-8129.
[55]
Paris, J. L.; Mannaris, C.; Victoria Cabañas, M.; Carlisle, R.; Manzano, M.; Vallet-Regi, M.; Coussios, C. C. Ultrasound-mediated cavitation- enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. Chem. Eng. J. 2018, 340, 2-8.
[56]
Wang, Y. F.; Liu, J.; Ma, X. W.; Liang X. J. Nanomaterial-assisted sensitization of oncotherapy. Nano Res. 2018, 11, 2932-2950.
[57]
Lin, X. H.; Qiu, Y.; Song, L.; Chen, S.; Chen, X. F.; Huang, G. M.; Song, J. B.; Chen, X. Y.; Yang, H. H. Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy. Nanoscale Horiz. 2019, 4, 747-756.
[58]
Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393-1402.
[59]
Han, H. J.; Ekweremadu, C.; Patel, N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J. Drug Deliv. Sci. Technol. 2019, 52, 1051-1060.
[60]
Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1-9.
[61]
Wang, L.; Niu, M. Y.; Zheng, C X.; Zhao, H. J.; Niu, X. X.; Li, L.; Hu, Y. J.; Zhang, Y. J.; Shi, J. J.; Zhang, Z. Z. A core-shell nanoplatform for synergistic enhanced sonodynamic therapy of hypoxic tumor via cascaded strategy. Adv. Healthc. Mater. 2018, 7, 1800819.
[62]
Du, J. Z.; Lane, L. A.; Nie, S. M. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 2015, 219, 205-214.
[63]
Bordat, A.; Boissenot, T.; Nicolas, J.; Tsapis, N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev. 2019, 138, 167-192.
[64]
Castillo, R. R.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin. Drug Deliv. 2017, 14, 229-243.
[65]
Xiao, M.; Wang, Z. L.; Lyu, M. Q.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
[66]
Yu, L.; Yu, X. Y.; Lou, X. W. The design and synthesis of hollow micro-/nanostructures: Present and future trends. Adv. Mater. 2018, 30, 1800939.
[67]
Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749-6773.
[68]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Guterres, S. S.; Pohlmann, A. R.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics 2018, 10, 34.
[69]
Peng, L.; Liu, S. Y.; Feng, A. C.; Yuan, J. Y. Polymeric nanocarriers based on cyclodextrins for drug delivery: Host-guest interaction as stimuli responsive linker. Mol. Pharmaceutics 2017, 14, 2475-2486.
[70]
Feng, Q. H.; Zhang, W. X.; Yang, X. M.; Li, Y. Z.; Hao, Y. W.; Zhang, H. L.; Hou, L.; Zhang, Z. Z. pH/ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv. Healthc. Mater. 2018, 7, 1700957.
[71]
Teng, Z. G.; Li, W.; Tang, Y. X.; Elzatahry, A.; Lu, G. M.; Zhao, D. Y. Mesoporous organosilica hollow nanoparticles: Synthesis and applications. Adv. Mater. 2019, 31, 1707612.
[72]
Zhang, J. F.; Zhang, J.; Li, W. Y.; Chen, R.; Zhang, Z. Y.; Zhang, W. J.; Tang, Y. B.; Chen, X. Y.; Liu, G.; Lee, C. S. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging- guided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 2017, 7, 3007-3020.
[73]
Salonen, J.; Lehto, V. P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J. 2008, 137, 162-172.
[74]
Wu, M. Y.; Meng, Q. S.; Chen, Y.; Zhang, L. X.; Li, M. L; Cai, X. J.; Li, Y. P.; Yu, P. C.; Zhang, L. L.; Shi, J. L. Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv. Mater. 2016, 28, 1963-1969.
[75]
Lu, L. L.; Xiong, W. Y.; Ma, J. B.; Gao, T. F.; Peng, S. Y.; Xiao, W. Design of dual-responsive nanocarries with high drug loading capacity based on hollow mesoporous organosilica nanoparticles. Mater. Chem. Phys. 2019, 233, 230-235.
[76]
Yang, S.; Fan, J.; Lin, S. T.; Wang, Y. R.; Liu, C. Novel pH- responsive biodegradable organosilica nanoparticles as drug delivery system for cancer therapy. Colloids Surf. A 2020, 585, 124133.
[77]
Yu, L. D.; Chen, Y.; Lin, H.; Du, W. X.; Chen, H. R.; Shi, J. L. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor- specific drug delivery. Biomaterials 2018, 161, 292-305.
[78]
An, J.; Hu, Y. G.; Li, C.; Hou, X. L.; Cheng, K.; Zhang, B.; Zhang, R. Y.; Li, D. Y.; Liu, S. J.; Liu, B. et al. A pH/ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials 2020, 230, 119636.
[79]
Liu, X. L.; Pan, Y. C.; Yang, J. J.; Gao, Y. F.; Huang, T.; Luan, X. W.; Wang, Y. Z.; Song, Y. J. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Res. 2020, 13, 653-660.
[80]
Pan, X. T.; Wang, W. W.; Huang, Z. J.; Liu, S.; Guo, J.; Zhang, F. R.; Yuan, H. J.; Li, X.; Liu, F. Y.; Liu, H. Y. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angew. Chem., Int. Ed., in press, .
[81]
Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780-3795.
[82]
Zhang, Y. J.; Wang, H. L.; Jia, X. D.; Du, S. Z.; Yin, Y. Y.; Zhang, X. J. Cascade catalytic nanoplatform for enhanced starvation and sonodynamic therapy. J. Drug Target. 2020, 28, 195-203.
[83]
Khan, M. S.; Hwang, J.; Lee, K.; Choi, Y.; Kim, K.; Koo, H. J.; Hong, J. W.; Choi, J. Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules 2018, 23, 2210.
[84]
Song, R. Y.; Hu, D. H.; Chung, H. Y.; Sheng, Z. H.; Yao, S. H. Lipid- polymer bilaminar oxygen nanobubbles for enhanced photodynamic therapy of cancer. ACS Appl. Mater. Interfaces 2018, 10, 36805-36813.
[85]
Wang, J. P.; Liu, L.; You, Q.; Song, Y. L.; Sun, Q.; Wang, Y. D.; Cheng, Y.; Tan, F. P.; Li, N. All-in-one theranostic nanoplatform based on hollow MoSX for photothermally-maneuvered oxygen self-enriched photodynamic therapy. Theranostics 2018, 8, 955-971.
[86]
Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716-2723.
[87]
Zhang, H. J.; Chen, J. J.; Zhu, X.; Ren, Y. P.; Cao, F.; Zhu, L.; Hou, L.; Zhang, H. L.; Zhang, Z. Z. Ultrasound induced phase-transition and invisible nanobomb for imaging-guided tumor sonodynamic therapy. J. Mater. Chem. B 2018, 6, 6108-6121.
[88]
Yu, M.; Xu, X. L.; Cai, Y. J.; Zou, L. Y.; Shuai, X. T. Perfluorohexane-cored nanodroplets for stimulations-responsive ultrasonography and O2-potentiated photodynamic therapy. Biomaterials 2018, 175, 61-71.
[89]
Xu, L. F.; Qiu, X. F.; Zhang, Y. T.; Cao, K.; Zhao, X. Z.; Wu, J. H.; Hu, Y. Q.; Guo, H. Q. Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply. J. Transl. Med. 2016, 14, 268.
[90]
Wang, Y.; Liu, Y.; Wu, H. X.; Zhang, J. P.; Tian, Q. W.; Yang, S. P. Functionalized holmium-doped hollow silica nanospheres for combined sonodynamic and hypoxia-activated therapy. Adv. Funct. Mater. 2019, 29, 1805764.
[91]
Guan, G. Q.; Wang, X.; Huang, X. J.; Zhang, W. L.; Cui, Z.; Zhang, Y. F.; Lu, X. W.; Zou, R. J.; Hu, J. Q. Porous cobalt sulfide hollow nanospheres with tunable optical property for magnetic resonance imaging-guided photothermal therapy. Nanoscale 2018, 10, 14190-14200.
[92]
Janetanakit, W.; Wang, L. P.; Santacruz-Gomez, K.; Landon, P. B.; Sud, P. L.; Patel, N.; Jang, G.; Jain, M.; Yepremyan, A.; Kazmi, S. A. et al. Gold-embedded hollow silica nanogolf balls for imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 27533-27543.
[93]
Zhou, H.; Yang, H.; Tang, L.; Wang, Y.; Li, Y.; Liu, N.; Zeng, X. D.; Yan, Y.; Wu, J. Z.; Chen, S. Z. et al. Mn-loaded apolactoferrin dots for in vivo MRI and NIR-II cancer imaging. J. Mater. Chem. C 2019, 7, 9448-9454.
[94]
Sun, Y. H.; Chen, H. D.; Liu, G. F.; Ma, L. N.; Wang, Z. X. The controllable growth of ultrathin MnO2 on polydopamine nanospheres as a single nanoplatform for the MRI-guided synergistic therapy of tumors. J. Mater. Chem. B 2019, 7, 7152-7161.
[95]
Tian, X. T.; Cao, P. P.; Zhang, H.; Li, Y. H.; Yin, X. B. GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework. Chem. Commun. 2019, 55, 6241-6244.
[96]
Fragai, M.; Ravera, E.; Tedoldi, F.; Luchinat, C.; Parigi, G. Relaxivity of Gd-based MRI contrast agents in crosslinked hyaluronic acid as a model for tissues. ChemPhysChem 2019, 20, 2204-2209.
[97]
Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P. A.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134-4145.
[98]
Chen, F. H.; Zhang, L. M.; Chen, Q. T.; Zhang, Y.; Zhang, Z. J. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG- functionalized porous silica shell. Chem. Commun. 2010, 46, 8633-8635.
[99]
Tuziuti, T.; Yasui, K.; Sivakumar, M.; Iida, Y.; Miyoshi, N. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J. Phys. Chem. A 2005, 109, 4869-4872.
[100]
Farny, C. H.; Wu, T. M.; Holt, R. G.; Murray, T. W.; Roy, R. A. Nucleating cavitation from laser-illuminated nano-particles. Acoust. Res. Lett. Online 2005, 6, 138-143.
[101]
Beik, J.; Khateri, M.; Khosravi, Z.; Kamrava, S. K.; Kooranifar, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 2019, 387, 299-324.
[102]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharmaceutics 2019, 16, 1-23.
[103]
Elahi, N.; Kamali, M.; Baghersad, M. H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537-556.
[104]
Kang, Z.; Yan, X. Q.; Zhao, L. Q.; Liao, Q. L.; Zhao, K.; Du, H. W.; Zhang, X. H.; Zhang, X. J.; Zhang, Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res. 2015, 8, 2004-2014.
[105]
Shanei, A.; Sazgarnia, A.; Meibodi, N. T.; Eshghi, H.; Hassanzadeh- Khayyat, M.; Esmaily, H.; Kakhki, N. A. Sonodynamic therapy using protoporphyrin IX conjugated to gold nanoparticles: An in vivo study on a colon tumor model. Iran. J. Basic Med. Sci. 2012, 15, 759-767.
[106]
Chen, Y. W.; Liu, T. Y.; Chang, P. H.; Hsu, P. H.; Liu, H. L.; Lin, H. C.; Chen, S. Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 2016, 8, 12648-12657.
[107]
Cao, Y.; Wu, T. T.; Dai, W. H.; Dong, H. F.; Zhang, X. J. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria- targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105-9114.
[108]
Wei, B.; Dong, F.; Yang, W.; Luo, C. H.; Dong, Q. J.; Zhou, Z. Q.; Yang, Z.; Sheng, L. Q. Synthesis of carbon-dots@SiO2@TiO2 nanoplatform for photothermal imaging induced multimodal synergistic antitumor. J. Adv. Res. 2020, 23, 13-23.
[109]
Harada, Y.; Ogawa, K.; Irie, Y.; Endo, H.; Feril, L. B. Jr.; Uemura, T.; Tachibana, K. Ultrasound activation of TiO2 in melanoma tumors. J. Control. Release 2011, 149, 190-195.
[110]
Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrason. Sonochem. 2014, 21, 289-294.
[111]
You, D. G.; Deepagan, V. G.; Um, W.; Jeon, S.; Son, S.; Chang, H.; Yoon, H. I.; Cho, Y. W.; Swierczewska, M.; Lee, S. et al. ROS- generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 2016, 6, 23200.
[112]
Harada, A.; Ono, M.; Yuba, E.; Kono, K. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater. Sci. 2013, 1, 65-73.
[113]
Ogino, C.; Shibata, N.; Sasai, R.; Takaki, K.; Miyachi, Y.; Kuroda, S.; Ninomiya, K.; Shimizu, N. Construction of protein-modified TiO2 nanoparticles for use with ultrasound irradiation in a novel cell injuring method. Bioorg. Med. Chem. Lett. 2010, 20, 5320-5325.
[114]
Ninomiya, K.; Fukuda, A.; Ogino, C.; Shimizu, N. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason. Sonochem. 2014, 21, 1624-1628.
[115]
McMaster, W. A.; Wang, X. J.; Caruso, R. A. Collagen-templated bioactive titanium dioxide porous networks for drug delivery. ACS Appl. Mater. Interfaces 2012, 4, 4717-4725.
[116]
Liu, D.; Bi, Y. G. Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. Adv. Powder Technol. 2019, 30, 2169-2177.
[117]
Shi, J. J.; Chen, Z. Y.; Wang, B. H.; Wang, L.; Lu, T. T.; Zhang, Z. Z. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy. ACS Appl. Mater. Interfaces 2015, 7, 28554-28565.
[118]
Malekmohammadi, S.; Hadadzadeh, H.; Rezakhani, S.; Amirghofran, Z. Design and synthesis of gatekeeper coated dendritic silica/titania mesoporous nanoparticles with sustained and controlled drug release properties for targeted synergetic chemo-sonodynamic therapy. ACS Biomater. Sci. Eng. 2019, 5, 4405-4415.
[119]
Feng, Q. H.; Yang, X. M.; Hao, Y. T.; Wang, N.; Feng, X. B.; Hou, L.; Zhang, Z. Z. Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy. ACS Appl. Mater. Interfaces 2019, 11, 32729-32738.
[120]
Gao, F. L.; He, G. L.; Yin, H.; Chen, J.; Liu, Y. B.; Lan, C.; Zhang, S. R.; Yang, B. C. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale 2019, 11, 2374-2384.
[121]
Han, X. X.; Huang, J.; Jing, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. Oxygen-deficient black titania for synergistic/ enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 2018, 12, 4545-4555.
[122]
Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527-6537.
[123]
Sviridov, A.; Tamarov, K.; Fesenko, I.; Xu, W. J.; Andreev, V.; Timoshenko, V.; Lehto, V. P. Cavitation induced by Janus-like mesoporous silicon nanoparticles enhances ultrasound hyperthermia. Front. Chem. 2019, 7, 393.
[124]
Osminkina, L. A.; Kudryavtsev, A. A.; Zinovyev, S. V.; Sviridov, A. P.; Kargina, Y. V.; Tamarov, K. P.; Nikiforov, V. N.; Ivanov, A. V.; Vasilyev, A. N.; Timoshenko, V. Y. Silicon nanoparticles as amplifiers of the ultrasonic effect in sonodynamic therapy. Bull. Exp. Biol. Med. 2016, 161, 296-299.
[125]
Osminkina, L. A.; Sivakov, V. A.; Mysov, G. A.; Georgobiani, V. A.; Natashina, U. A.; Talkenberg, F.; Solovyev, V. V.; Kudryavtsev, A. A.; Timoshenko, V. Y. Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy. Nanoscale Res. Lett. 2014, 9, 463.
[126]
Osminkina, L. A.; Nikolaev, A. L.; Sviridov, A. P.; Andronova, N. V.; Tamarov, K. P.; Gongalsky, M. B.; Kudryavtsev, A. A.; Treshalina, H. M.; Timoshenko, V. Y. Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer. Micropor. Mesopor. Mater. 2015, 210, 169-175.
[127]
Sviridov, A. P.; Osminkina, L. A.; Nikolaev, A. L.; Kudryavtsev, A. A.; Vasiliev, A. N.; Timoshenko, V. Y. Lowering of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles for sonodynamic therapy applications. Appl. Phys. Lett. 2015, 107, 123107.
[128]
Gorgizadeh, M.; Azarpira, N.; Lotfi, M.; Daneshvar, F.; Salehi, F.; Sattarahmady, N. Sonodynamic cancer therapy by a nickel ferrite/ carbon nanocomposite on melanoma tumor: In vitro and in vivo studies. Photodiagn. Photodyn. Ther. 2019, 27, 27-33.
[129]
Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen- deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, 1900730.
[130]
Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Hou, X. L.; Zhang, X. S.; Hu, Y. G.; Liu, B.; Zhao, Y. D. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging- guided enhanced sonodynamic therapy. Theranostics 2020, 10, 867-887.
Nano Research
Pages 2898-2908
Cite this article:
Xu T, Zhao S, Lin C, et al. Recent advances in nanomaterials for sonodynamic therapy. Nano Research, 2020, 13(11): 2898-2908. https://doi.org/10.1007/s12274-020-2992-5
Topics:

1047

Views

112

Crossref

N/A

Web of Science

114

Scopus

6

CSCD

Altmetrics

Received: 25 May 2020
Revised: 13 July 2020
Accepted: 18 July 2020
Published: 31 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return