AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Single-atom site catalysts for environmental catalysis

Ningqiang Zhang1Chenliang Ye1Han Yan1Lingcong Li3( )Hong He2Dingsheng Wang1( )Yadong Li1
Department of Chemistry, Tsinghua University, Beijing 100084, China
Key Laboratory of Beijing on Regional Air Pollution Control and Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
Show Author Information

Graphical Abstract

Abstract

In recent decades, the environmental protection and long-term sustainability have become the focus of attention due to the increasing pollution generated by the intense industrialization. To overcome these issues, environmental catalysis has increasingly been used to solve the negative impact of pollutants emission on the global environment and human health. Supported platinum-metal-group (PGM) materials are commonly utilized as the state-of-the-art catalysts to eliminate gaseous pollutants but large quantities of PGMs are required. By comparison, single-atom site catalysts (SACs) have attracted much attention in catalysis owing to their 100% atom efficiency and unique catalytic performances towards various reactions. Over the past decade, we have witnessed burgeoning interests of SACs in heterogeneous catalysis. However, to the best of our knowledge, the systematic summary and analysis of SACs in catalytic elimination of environmental pollutants has not yet been reported. In this paper, we summarize and discuss the environmental catalysis applications of SACs. Particular focus was paid to automotive and stationary emission control, including model reaction (CO oxidation, NO reduction and hydrocarbon oxidation), overall reaction (three-way catalytic and diesel oxidation reaction), elimination of volatile organic compounds (formaldehyde, benzene, and toluene), and removal/decomposition of other pollutants (Hg0 and SO3). Perspectives related to further challenges, directions and design strategies of single-atom site catalysts in environmental catalysis were also provided.

References

[1]
L. P. Han,; S. X. Cai,; M. Gao; J. Y. Hasegawa; P. L. Wang,; J. P. Zhang,; L. Y. Shi,; D. S. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916-10976.
[2]
A. M. Beale,; F. Gao,; I. Lezcano-Gonzalez,; C. H. F. Peden,; J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371-7405.
[3]
M. R. Heal,; P. Kumar,; R. M. Harrison, Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606-6630.
[4]
W. Lee,; G. N. Bae, Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts. Environ. Sci. Technol. 2009, 43, 1522-1527.
[5]
B. K. Min,; C. M. Friend, Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709-2724.
[6]
R. C. Cohen,; J. G. Murphy, Photochemistry of NO2 in earth's stratosphere: Constraints from observations. Chem. Rev. 2003, 103, 4985-4998.
[7]
A. A. Lizzio,; J. A. DeBarr, Mechanism of SO2 removal by carbon. Energy Fuels 1997, 11, 284-291.
[8]
C. He,; J. Cheng,; X. Zhang,; M. Douthwaite,; S. Pattisson,; Z. P. Hao, Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471-4568.
[9]
V. H. Grassian, Environmental Catalysis; CRC Press: Boca Raton, 2005.
[10]
H. Deng,; S. Y. Kang,; J. Z. Ma,; C. B. Zhang,; H. He, Silver incorporated into cryptomelane-type manganese oxide boosts the catalytic oxidation of benzene. Appl. Catal. B: Environ. 2018, 239, 214-222.
[11]
M. S. Jin,; H. Y. Liu,; H. Zhang,; Z. X. Xie,; J. Y. Liu,; Y. N. Xia, Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83-91.
[12]
L. C. Li,; N. Q. Zhang,; X. Huang,; Y. Liu,; Y. Y. Li,; G. Z. Zhang,; L. Y. Song,; H. He, Hydrothermal stability of core-shell Pd@Ce0.5Zr0.5O2/ Al2O3 catalyst for automobile three-way reaction. ACS Catal. 2018, 8, 3222-3231.
[13]
Y. J. Liang,; Y. X. Liu,; J. G. Deng,; K. F. Zhang,; Z. Q. Hou,; X. T. Zhao,; X. Zhang,; K. Y. Zhang,; R. J. Wei,; H. X. Dai, Coupled palladium-tungsten bimetallic nanosheets/TiO2 hybrids with enhanced catalytic activity and stability for the oxidative removal of benzene. Environ. Sci. Technol. 2019, 53, 5926-5935.
[14]
L. C. Li,; N. Q. Zhang,; H. He,; G. Z. Zhang,; L. Y. Song,; W. G. Qiu Shape-controlled synthesis of Pd nanocrystals with exposed {110} facets and their catalytic applications. Catal. Today 2019, 327, 28-36.
[15]
N. Q. Zhang,; L. C. Li,; R. Wu,; L. Y. Song,; L. R. Zheng,; G. Z. Zhang,; H. He, Activity enhancement of Pt/MnOx catalyst by novel β-MnO2 for low-temperature CO oxidation: Study of the CO-O2 competitive adsorption and active oxygen species. Catal. Sci. Technol. 2019, 9, 347-354.
[16]
S. Schauermann,; J. Hoffmann,; V. Johánek,; J. Hartmann,; J. Libuda,; H. J. Freund, Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew. Chem., Int. Edit. 2002, 41, 2532-2535.
[17]
L. C. Liu,; A. Corma, Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
[18]
X. F. Yang,; A. Q. Wang,; B. T. Qiao,; J. Li,; J. Y. Liu,; T. Zhang, Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.
[19]
Z. Li,; S. F. Ji,; Y. W. Liu,; X. Cao,; S. B. Tian,; Y. J. Chen,; Z. Q. Niu,; Y. D. Li, Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623-682.
[20]
N. Q. Zhang,; L. C. Li,; Y. Chu,; L. R. Zheng,; S. R. Sun,; G. Z. Zhang,; H. He,; J. S. Zhao, High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catal. Today 2019, 332, 101-108.
[21]
B. T. Qiao,; A. Q. Wang,; X. F. Yang,; L. F. Allard,; Z. Jiang,; Y. T. Cui,; J. Y. Liu,; J. Li,; T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[22]
Z. C. Zhuang,; Q. Kang,; D. S. Wang,; Y. D. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[23]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[24]
Q. Xu,; C. X. Guo,; S. B. Tian,; J. Zhang,; W. X. Chen,; W. C. Cheong,; L. Gu,; L. R. Zheng,; J. P. Xiao,; Q. Liu, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972-981.
[25]
Y. Xiong,; J. C. Dong,; Z. Q. Huang,; P. Y. Xin,; W. X. Chen,; Y. Wang,; Z. Li,; Z. Jin,; W. Xing,; Z. B. Zhuang, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390-397.
[26]
Z. Li,; Y. J. Chen; S. F. Ji,; Y. Tang,; W. X. Chen,; A. Li,; J. Zhao,; Y. Xiong,; Y. E. Wu,; Y. Gong, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem., 2020, 12, 764-772.
[27]
S. B. Tian,; M. Hu,; Q. Xu,; W. B. Gong; W. X. Chen,; J. R. Yang,; Y. Q. Zhu,; C. Chen,; J. He,; Q. Liu, et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater., in press, .
[28]
S. F. Ji,; Y. Qu,; T. Wang,; Y. J. Chen,; G. F. Wang,; X. Li,; J. C. Dong,; Q. Y. Chen,; W. Y. Zhang,; Z. D. Zhang, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[29]
J. J. Mao,; C. T. He,; J. J. Pei,; Y. Liu,; J. Li,; W. X. Chen,; D. S. He,; D. S. Wang,; Y. D. Li, Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442-3448.
[30]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[31]
J. Zhang,; Z. Y. Wang,; W. X. Chen,; Y. Xiong,; W. C. Cheong,; L. R. Zheng,; W. S. Yan,; L. Gu,; C. Chen,; Q. Peng, et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725-737.
[32]
S. Ren,; Q. Yu,; X. H. Yu,; P. Rong,; L. Y. Jiang,; J. C. Jiang, Graphene-supported metal single-atom catalysts: A concise review. Sci. China Mater. 2020, 6, 903-920.
[33]
L. G. Chen,; X. Liang,; X. T. Li,; J. J. Pei,; H. Lin,; D. Z. Jia,; W. X. Chen,; D. S. Wang,; Y. D. Li, Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.
[34]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[35]
Q. C. Feng,; S. Zhao,; Q. Xu,; W. X. Chen,; S. B. Tian,; Y. S. Wang,; W. S. Yan,; J. Luo,; D. S. Wang,; Y. D. Li, Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.
[36]
R. Lin,; X. L. Ma,; W. C. Cheong,; C. Zhang,; W. Zhu,; J. J. Pei,; K. Y. Zhang,; B. Wang,; S. Y. Liang,; Y. X. Liu, et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866-2871.
[37]
L. F. Zhang,; W. H. Zhao,; W. H. Zhang,; J. Chen,; Z. P. Hu, gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181-1186.
[38]
N. H. Fu,; X. Liang,; Z. Li,; W. X. Chen,; Y. Wang,; L. R. Zheng,; Q. H. Zhang,; C. Chen,; D. S. Wang,; Q. Peng, et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947-951.
[39]
K. P. Liu,; Y. Tang,; Z. Y. Yu,; B. H. Ge,; G. H. Ren,; Y. Q. Ren,; Y. J. Su,; J. C. Zhang,; X. C. Sun,; Z. Q. Chen, et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci. China Mater. 2020, 63, 949-958.
[40]
Z. Zhang,; C. Ma,; Y. C. Tu,; R. Si,; J. Wei,; S. H. Zhang,; Z. Wang,; J. F. Li,; Y. Wang,; D. H. Deng, Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313-2317.
[41]
X. X. Ye,; H. W. Wang,; Y. Lin,; X. Y. Liu,; L. N. Cao,; J. Gu,; J. L. Lu, Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401-1409.
[42]
H. N. Li,; C. Y. Cao,; J. Liu,; Y. Shi,; R. Si,; L. Gu,; W. G. Song, Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater. 2019, 62, 1306-1314.
[43]
S. Z. Zhao,; Y. F. Wen,; X. J. Liu,; X. Y. Pen,; F. Lü,; F. Y. Gao,; X. Z. Xie,; C. C. Du,; H. H. Yi,; D. J. Kang, et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544-1551.
[44]
H. Yan,; C. Yang,; W. P. Shao,; L. H. Cai,; W. W. Wang,; Z. Jin,; C. J. Jia, Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst. Nat. Commun. 2019, 10, 3470.
[45]
X. H. Sun,; A. I. O. Suarez,; M. Meijerink,; T. van Deelen,; S. Ould-Chikh,; J. Zečević,; K. P. de Jong,; F. Kapteijn,; J. Gascon, Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework. Nat. Commun. 2017, 8, 1680.
[46]
C. L. Ye,; M. Peng,; Y. H. Wang,; N. Q. Zhang,; D. S. Wang,; M. L. Jiao,; J. T. Miller, Surface hexagonal Pt1Sn1 intermetallic on Pt nanoparticles for selective propane dehydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 25903-25909.
[47]
P. Jiang,; S. Chen,; C. Wang,; D. Wang,; J. Diao,; Z. Cao,; Z. Lin,; Q. Luo,; J. Lu,; H. Huang, et al. Atomically dispersed Fe-N-S-C anchored on pomegranate-shaped carbon spheres for oxygen reduction reaction and all-solid-state zinc-air battery. Mater. Today Sustain. 2020, 9, 100039.
[48]
Q. Fu,; H. Saltsburg,; M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935-938.
[49]
Z. W. Huang,; X. Gu,; Q. Q. Cao,; P. P. Hu,; J. M. Hao,; J. H. Li,; X. F. Tang, Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. Int., Ed. 2012, 51, 4198-4203.
[50]
L. Wang,; S. R. Zhang,; Y. Zhu,; A. Patlolla,; J. J. Shan,; H. Yoshida,; S. Takeda,; A. I. Frenkel,; F. Tao, Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal. 2013, 3, 1011-1019.
[51]
E. J. Peterson,; A. T. DeLaRiva;; S. Lin,; R. S. Johnson,; H. Guo,; J. T. Miller,; J. H. Kwak,; C. H. F. Peden,; B. Kiefer,; L. F. Allard, et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.
[52]
S. R. Zhang,; L. Nguyen,; J. X. Liang,; J. J. Shan,; J. Y. Liu,; A. I. Frenkel,; A. Patlolla,; W. X. Huang,; J. Li,; F. Tao, Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.
[53]
J. Lin,; B. T. Qiao,; N. Li,; L. Li,; X. C. Sun,; J. Y. Liu,; X. D. Wang,; T. Zhang, Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911-7914.
[54]
J. Jones,; H. F. Xiong,; A. DeLaRiva,; E. J. Peterson,; H. Pham,; S. R. Challa,; G. Qi,; S. Oh,; M. H. Wiebenga,; X. I. P. Hernández, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.
[55]
L. Nguyen,; S. R. Zhang,; L. Wang,; Y. Y. Li,; H. Yoshida,; A. Patlolla,; S. Takeda,; A. I. Frenkel,; F. Tao, Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 2016, 6, 840-850.
[56]
L. Nie,; D. H. Mei,; H. F. Xiong,; B. Peng,; Z. B. Ren,; X. I. P. Hernández,; A. DeLaRiva,; M. Wang,; M. H. Engelhard,; L. Kovarik, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419-1423.
[57]
Y. X. Chen,; J. Y. Gao,; Z. W. Huang,; M. J. Zhou,; J. X. Chen,; C. Li,; Z. Ma,; J. M. Chen,; X. F. Tang, Sodium rivals silver as single-atom active centers for catalyzing abatement of formaldehyde. Environ. Sci. Technol. 2017, 51, 7084-7090.
[58]
H. Jeong,; G. Lee,; B. S. Kim,; J. Bae,; J. W. Han,; H. Lee, Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558-9565.
[59]
W. J. Yang,; Z. Y. Gao,; X. L. Ding,; G. Lv,; W. P. Yan, The adsorption characteristics of mercury species on single atom iron catalysts with different graphene-based substrates. Appl. Surf. Sci. 2018, 455, 940-951.
[60]
S. Nigam,; C. Majumder, Single atom alloy catalyst for SO3 decomposition: Enhancement of platinum catalyst's performance by Ag atom embedding. Nanoscale 2018, 10, 20599-20610.
[61]
K. Yang,; Y. X. Liu,; J. G. Deng,; X. T. Zhao,; J. Yang,; Z. Han,; Z. Q. Hou,; H. X. Dai, Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B: Environ. 2019, 244, 650-659.
[62]
Y. Zhang,; Y. X. Liu,; S. H. Xie,; H. B. Huang,; G. S. Guo,; H. X. Dai,; J. G. Deng, Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environ. Int. 2019, 128, 335-342.
[63]
S. Hoang,; Y. B. Guo,; A. J. Binder,; W. X. Tang,; S. B. Wang,; J. Y. Liu,; H. Tran,; X. X. Lu,; Y. Wang,; Y. Ding, et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.
[64]
F. Wang,; J. Z. Ma,; S. H. Xin,; Q. Wang,; J. Xu,; C. B. Zhang,; H. He,; Z. X. Cheng Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.
[65]
W. Y. Qu,; X. N. Liu,; J. X. Chen,; Y. Y. Dong,; X. F. Tang,; Y. X. Chen, Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3. Nat. Commun. 2020, 11, 1532.
[66]
H. Jeong,; O. Kwon,; B. S. Kim,; J. Bae,; S. Shin,; H. E. Kim,; J. Kim,; H. Lee, Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368-375.
[67]
D. Kunwar,; S. L. Zhou,; A. DeLaRiva,; E. J. Peterson,; H. F. Xiong,; X. I. Pereira-Hernández,; S. C. Purdy,; R. Ter Veen,; H. H. Brongersma,; J. T. Miller, et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978-3990.
[68]
A. Beniya,; S. Higashi, Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2019, 2, 590-602.
[69]
J. W. Wan,; W. X. Chen,; C. Y. Jia,; L. R. Zheng,; J. C. Dong,; X. S. Zheng,; Y. Wang,; W. S. Yan,; C. Chen,; Q. Peng, et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
[70]
H. Y. Zhang,; S. H. Sui,; X. M. Zheng,; R. R. Cao,; P. Y. Zhang, One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B: Environ. 2019, 257, 117878.
[71]
Y. J. Chen,; S. F. Ji,; C. Chen,; Q. Peng,; D. S. Wang,; Y. D. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242-1264.
[72]
J. Y. Liu, Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34-59.
[73]
C. L. Ye,; N. Q. Zhang,; D. S. Wang,; Y. D. Li. Single atomic site catalysts: Synthesis, characterization, and applications. Chem. Commun. 2020, 56, 7687-7697.
[74]
Y. Wang,; J. Mao,; X. G. Meng,; L. Yu,; D. H. Deng,; X. H. Bao, Catalysis with two-Dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806-1854.
[75]
X. N. Li,; X. F. Yang,; Y. Q. Huang,; T. Zhang,; B. Liu, Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.
[76]
Y. Xin,; N. N. Zhang,; Y. N. Lv,; J. Wang,; Q. Li,; Z. L. Zhang, From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. J. Rare Earths 2020, 38, 850-862.
[77]
Y. X. Chen,; Z. W. Huang,; Z. Ma,; J. M. Chen,; X. F. Tang, Fabrication, characterization, and stability of supported single-atom catalysts. Catal. Sci. Technol. 2017, 7, 4250-4258.
[78]
M. V. Twigg, Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B: Environ. 2007, 70, 2-15.
[79]
J. H. Wang,; H. Chen,; Z. C. Hu,; M. F. Yao,; Y. D. Li, A review on the Pd-based three-way catalyst. Catal. Rev. 2015, 57, 79-144.
[80]
China vehicle environmental management annual report (2018) [Online]. http://www.gov.cn/guoqing/2019-04/09/content_5380744.htm.
[81]
J. G. Cohn, Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines. Environ. Health Persp. 1975, 10, 159-164.
[82]
N. Q. Zhang,; L. C. Li,; Y. Z. Guo,; J. D. He,; R. Wu,; L. Y. Song,; G. Z. Zhang,; J. S. Zhao,; D. S. Wang,; H. He, A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Appl. Catal. B: Environ. 2020, 270, 118860.
[83]
N. Q. Zhang,; L. C. Li,; B. B. Zhang,; Y. M. Sun,; L. Y. Song,; R. Wu,; H. He, Polytetrafluoroethylene modifying: A low cost and easy way to improve the H2O resistance ability over MnOx for low-temperature NH3-SCR. J. Environ. Chem. Eng. 2019, 7, 103044.
[84]
J. Wang,; R. You,; C. Zhao,; W. Zhang,; W. Liu,; X. P. Fu,; Y. Y. Li,; F. Y. Zhou,; X. S. Zheng,; Q. Xu, et al. N-coordinated dual-Metal single-Site catalyst for low-temperature CO oxidation. ACS Catal. 2020, 10, 2754-2761.
[85]
Z. Z. Lin, Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon 2016, 108, 343-350.
[86]
J. Lin,; X. D. Wang,; T. Zhang, Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805-1813.
[87]
L. C. Li,; X. J. Liu,; H. He,; N. Q. Zhang,; Z. W. Liu,; G. Z. Zhang, A novel two-dimensional MgO-h-BN nanomaterial supported Pd catalyst for CO oxidation reaction. Catal. Today 2019, 332, 214-221.
[88]
Z. L. Zhang,; Y. Z. Fan,; Y. Xin,; Q. Li,; R. R. Li,; J. A. Anderson,; Z. L. Zhang, Improvement of air/fuel ratio operating window and hydrothermal stability for Pd-only three-way catalysts through a Pd-Ce2Zr2O8 superstructure interaction. Environ. Sci. Technol. 2015, 49, 7989-7995.
[89]
Y. Goto,; A. Morikawa,; M. Iwasaki,; M. Miura,; T. Tanabe, Enhanced oxygen storage capacity of cation-ordered cerium-zirconium oxide induced by titanium substitution. Chem. Commun. 2018, 54, 3528-3531.
[90]
P. Li,; X. Y. Chen,; Y. D. Li,; J. W. Schwank, A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90-115.
[91]
M. Yoo,; Y. S. Yu,; H. Ha,; S. Lee,; J. S. Choi,; S. Oh,; E. Kang,; H. Choi,; H. An,; K. S. Lee, et al. A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 2020, 13, 1231-1239.
[92]
J. Resasco,; L. DeRita,; S. Dai,; J. P. Chada,; M. J. Xu,; X. X. Yan,; J. Finzel,; S. Hanukovich,; A. S. Hoffman,; G. W. Graham, et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169-184.
[93]
X. I. Pereira-Hernández,; A. DeLaRiva,; V. Muravev,; D. Kunwar,; H. F. Xiong,; B. Sudduth,; M. Engelhard,; L. Kovarik,; E. J. M. Hensen,; Y. Wang, et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.
[94]
N. Daelman,; M. Capdevila-Cortada,; N. López, Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215-1221.
[95]
C. L. Wang,; X. K. Gu,; H. Yan,; Y. Lin,; J. J. Li,; D. D. Liu,; W. X. Li,; J. L. Lu, Water-mediated Mars-Van Krevelen mechanism for CO oxidation on Ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887-891.
[96]
L. C. Li,; N. Q. Zhang,; R. Wu,; L. Y. Song,; G. Z. Zhang,; H. He, Comparative study of moisture-treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 catalysts for automobile exhaust emission reactions: Effect of core-shell interface. ACS Appl. Mater. Interfaces 2020, 12, 10350-10358.
[97]
J. Ke,; W. Zhu,; Y. Y. Jiang,; R. Si,; Y. J. Wang,; S. C. Li,; C. H. Jin,; H. C. Liu,; W. G. Song,; C. H. Yan, et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 2015, 5, 5164-5173.
[98]
S. Zhao,; F. Chen,; S. B. Duan,; B. Shao,; T. B. Li,; H. L. Tang,; Q. Q. Lin,; J. Y. Zhang,; L. Li,; J. H. Huang, et al. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat. Commun. 2019, 10, 3824.
[99]
X. L. Hu,; S. Y. Li,; Y. X. Chen,; W. Y. Qu,; J. X. Chen,; Z. Ma,; X. F. Tang, Single-ion copper doping greatly enhances catalytic activity of manganese oxides via electronic interactions. Chem. Commun. 2020, 56, 904-907.
[100]
P. P. Hu,; Z. W. Huang,; Z. Amghouz,; M. Makkee,; F. Xu,; F. Kapteijn,; A. Dikhtiarenko,; Y. X. Chen,; X. Gu,; X. F. Tang, Electronic metal-support interactions in single-atom catalysts. Angew. Chem., Int. Ed. 2014, 53, 3418-3421.
[101]
B. T. Qiao,; J. Lin,; A. Q. Wang,; Y. Chen,; T. Zhang,; J. Y. Liu, Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 2015, 36, 1505-1511.
[102]
M. J. Hülsey,; B. Zhang,; Z. R. Ma,; H. Asakura,; D. A. Do,; W. Chen,; T. Tanaka,; P. Zhang,; Z. L. Wu,; N. Yan, In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.
[103]
J. Zhang,; X. Wu,; W. C. Cheong,; W. X. Chen,; R. Lin,; J. Li,; L. R. Zheng,; W. S. Yan,; L. Gu,; C. Chen, et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.
[104]
B. Long,; Y. Tang,; J. Li, New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868-3880.
[105]
D. Yang,; S. J. Zhang,; P. H. Xu,; N. D. Browning,; D. A. Dixon,; B. C. Gates, Single-site osmium catalysts on MgO: Reactivity and catalysis of CO oxidation. Chem. -Eur. J. 2017, 23, 2532-2536.
[106]
B. Han,; T. B. Li,; J. Y. Zhang,; C. B. Zeng,; H. Matsumoto,; Y. Su,; B. T. Qiao,; T. Zhang, A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem. Commun. 2020, 56, 4870-4873.
[107]
Z. L. Zhang,; Y. H. Zhu,; H. Asakura,; B. Zhang,; J. G. Zhang,; M. X. Zhou,; Y. Han,; T. Tanaka,; A. Q. Wang,; T. Zhang, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.
[108]
J. H. Kwak,; J. Z. Hu,; D. H. Mei,; C. W. Yi,; D. H. Kim,; C. H. F. Peden,; L. F. Allard,; J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670-1673.
[109]
D. H. Mei,; J. H. Kwak,; J. Z. Hu,; S. J. Cho,; J. Szanyi,; L. F. Allard,; C. H. F. Peden, Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-supported Pt catalysts. J. Phys. Chem. Lett. 2010, 1, 2688-2691.
[110]
M. Moses-DeBusk,; M. Yoon,; L. F. Allard,; D. R. Mullins,; Z. L. Wu,; X. F. Yang,; G. Veith,; G. M. Stocks,; C. K. Narula, CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634-12645.
[111]
H. Shinjoh, Rare earth metals for automotive exhaust catalysts. J. Alloys Compd. 2006, 408-412, 1061-1064.
[112]
Y. Jing,; Z. X. Cai,; C. Liu,; T. Toyao,; Z. Maeno,; H. Asakura,; S. Hiwasa,; S. Nagaoka,; H. Kondoh,; K. I. Shimizu, Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3). ACS Catal. 2020, 10, 1010-2013.
[113]
F. Gholami,; M. Tomas,; Z. Gholami,; M. Vakili, Technologies for the nitrogen oxides reduction from flue gas: A review. Sci. Total Environ. 2020, 714, 136712.
[114]
Y. Xin,; N. N. Zhang,; Q. Li,; Z. L. Zhang,; X. M. Cao,; L. R. Zheng,; Y. W. Zeng,; J. A. Anderson, Selective catalytic reduction of NOx with NH3 over short-range ordered W-O-Fe structures with high thermal stability. Appl. Catal. B: Environ. 2018, 229, 81-87.
[115]
Y. Xin,; H. Li,; N. N. Zhang,; Q. Li,; Z. L. Zhang,; X. M. Cao,; P. Hu,; L. R. Zheng,; J. A. Anderson, Molecular-level insight into selective catalytic reduction of NOx with NH3 to N2 over a highly efficient bifunctional Va-MnOx catalyst at low temperature. ACS Catal. 2018, 8, 4937-4949.
[116]
R. Wu,; L. C. Li,; N. Q. Zhang,; J. D. He,; L. Y. Song,; G. Z. Zhang,; Z. L. Zhang,; H. He, Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5- MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite. Catal. Today, in press, .
[117]
N. Q. Zhang,; L. C. Li,; J. S. Zhao,; T. T. Yang,; G. Z. Zhang,; H. He,; S. R. Sun, Precisely controlled synthesis of α-/β-MnO2 materials by adding Zn(acac)2 as a phase transformation-inducing agent. Chem. Commun. 2018, 54, 1477-1480.
[118]
J. Jeon,; K. I. Kon,; T. Toyao,; K. I. Shimizu,; S. Furukawa, Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chem. Sci. 2019, 10, 4148-4162.
[119]
F. L. Xing,; J. Jeon,; T. Toyao,; K. I. Shimizu,; S. A. Furukawa, Cu-Pd single-atom alloy catalyst for highly efficient NO reduction. Chem. Sci. 2019, 10, 8292-8298.
[120]
P. Granger,; C. Dujardin,; J. F. Paul,; G. Leclercq, An overview of kinetic and spectroscopic investigations on three-way catalysts: Mechanistic aspects of the CO+NO and CO+N2O reactions. J. Mol. Catal. A: Chem. 2005, 228, 241-253.
[121]
H. Inomata,; M. Shimokawabe,; A. Kuwana,; M. Arai, Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: Influence of preparation variables on the catalytic performance. Appl. Catal. B: Environ. 2008, 84, 783-789.
[122]
Z. Gholami,; G. H. Luo,; F. Gholami,; F. Yang, Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review. Catal. Rev., in press, .
[123]
J. C. Wu,; Y. Z. Li,; Y. Yang,; Q. Zhang,; L. Yun,; S. W. Wu,; C. Y. Zhou,; Z. K. Jiang,; X. J. Zhao, A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO. J. Mater. Chem. A 2019, 7, 7202-7212.
[124]
S. R. Zhang,; Y. Tang,; L. Nguyen,; Y. F. Zhao,; Z. L. Wu,; T. W. Goh,; J. J. Liu,; Y. Y. Li,; T. Zhu,; W. Y. Huang, et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 2018, 8, 110-121.
[125]
T. Nanba,; S. Shinohara,; S. Masukawa,; J. Uchisawa,; A. Ohi,; A. Obuchi, Formation of active sites on Ir/WO3-SiO2 for selective catalytic reduction of NO by CO. Appl. Catal. B: Environ. 2008, 84, 420-425.
[126]
E. Fernández,; L. C. Liu,; M. Boronat,; R. Arenal,; P. Concepcion,; A. Corma, Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530-11541.
[127]
S. Masahide,; N. Mihiro,; I. Hironori,; I. Nobuhiro,; A. Masahiko, A highly active Ir/WO3 catalyst for the selective reduction of NO by CO in the presence of O2 or O2 + SO2. Chem. Lett. 2005, 34, 1426-1427.
[128]
E. D. Goodman,; A. C. Johnston-Peck,; E. M. Dietze,; C. J. Wrasman,; A. S. Hoffman,; F. Abild-Pedersen,; S. R. Bare,; P. N. Plessow,; M. Cargnello, Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2019, 2, 748-755.
[129]
C. K. Narula,; L. F. Allard,; M. Moses-DeBusk,; G. M. Stocks,; Z. L. Wu, Single Pd atoms on θ-Al2O3 (010) surface do not catalyze NO oxidation. Sci. Rep. 2017, 7, 560.
[130]
H. Wang,; J. S. Dong,; L. F. Allard,; S. Lee,; S. Oh,; J. Wang,; W. Li,; M. Q. Shen,; M. Yang, Single-site Pt/La-Al2O3 stabilized by barium as an active and stable catalyst in purifying CO and C3H6 emissions. Appl. Catal. B: Environ. 2019, 244, 327-339.
[131]
H. M. An,; P. J. McGinn, Catalytic behavior of potassium containing compounds for diesel soot combustion. Appl. Catal. B: Environ. 2006, 62, 46-56.
[132]
A. M. Gabelnick,; A. T. Capitano,; S. M. Kane,; J. L. Gland,; D. A. Fischer, Propylene oxidation mechanisms and intermediates using in situ soft x-ray fluorescence methods on the Pt(111) surface. J. Am. Chem. Soc. 2000, 122, 143-149.
[133]
H. Jeong,; J. Bae,; J. W. Han,; H. Lee, Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 2017, 7, 7097-7105.
[134]
Environmental Protection Agency U. S. Environmental topics (health) [Online]. https://www.epa.gov/environmental-topics/health-topics. (accessed 8 May 2017).
[135]
L. F. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B: Environ 2010, 100, 403-412.
[136]
J. X. Chen,; J. Y. Gao,; Y. X. Chen,; X. N. Liu,; C. Li,; W. Y. Qu,; Z. Ma,; X. F. Tang, Electronic-structure-dependent performance of single-site potassium catalysts for formaldehyde emission control. Ind. Eng. Chem. Res. 2018, 57, 12352-12357.
[137]
J. Chen,; D. X. Yan,; Z. Xu,; X. Chen,; X. Chen,; W. J. Xu,; H. P. Jia,; J. Chen, A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 2018, 52, 4728-4737.
[138]
M. M. Huang,; Y. X. Li,; M. W. Li,; J. Zhao,; Y. Q. Zhu,; C. Y. Wang,; V. K. Sharma, Active site-directed tandem catalysis on single platinum nanoparticles for efficient and stable oxidation of formaldehyde at room temperature. Environ. Sci. Technol. 2019, 53, 3610-3619.
[139]
X. C. Sun,; J. Lin,; Y. Chen,; Y. H. Wang,; L. Li,; S. Miao,; X. L. Pan,; X. D. Wang, Unravelling platinum nanoclusters as active sites to lower the catalyst loading for formaldehyde oxidation. Commun. Chem. 2019, 2, 27.
[140]
J. Chen,; M. Z. Jiang,; W. J. Xu,; J. Chen,; Z. X. Hong,; H. P. Jia, Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde. Appl. Catal. B: Environ. 2019, 259, 118013.
[141]
F. Xu,; Z. W. Huang,; P. P. Hu,; Y. X. Chen,; L. Zheng,; J. Y. Gao,; X. F. Tang, The promotion effect of isolated potassium atoms with hybridized orbitals in catalytic oxidation. Chem. Commun. 2015, 51, 9888-9891.
[142]
H. Masatake,; K. Tetsuhiko,; S. Hiroshi,; Y. Nobumasa, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 1987, 16, 405-408.
[143]
J. Chen,; M. Z. Jiang,; J. Chen,; W. J. Xu,; H. P. Jia, Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. J. Hazard. Mater. 2020, 392, 122511.
[144]
D. Widmann,; R. J. Behm, Active oxygen on a Au/TiO2 catalyst: Formation, stability, and CO oxidation activity. Angew. Chem., Int. Ed. 2011, 50, 10241-10245.
[145]
F. G. Shahna,; F. Golbabaei,; J. Hamedi,; H. Mahjub,; H. R. Darabi,; S. J. Shahtaheri, Treatment of benzene, toluene and xylene contaminated air in a bioactive foam emulsion reactor. Chin. J. Chem. Eng. 2010, 18, 113-121.
[146]
Z. W. Wang,; H. G. Yang,; Y. Liu,; S. G. Xie,; Y. X. Liu,; H. X. Dai,; H. B. Huang,; J. G. Deng, Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258.
[147]
T. Z. Xu,; H. Zheng,; P. Y. Zhang, Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene. J. Hazard. Mater. 2020, 388, 121746.
[148]
M. Mon,; M. A. Rivero-Crespo,; J. Ferrando-Soria,; A. Vidal-Moya,; M. Boronat,; A. Leyva-Pérez,; A. Corma,; J. C. Hernández-Garrido,; M. López-Haro,; J. J. Calvino, et al. Synthesis of densely packaged, ultrasmall Pt02 clusters within a thioether-functionalized MOF: Catalytic activity in industrial reactions at low temperature. Angew. Chem., Int. Ed. 2018, 57, 6186-6191.
[149]
H. L. Li,; L. B. Wang,; Y. Z. Dai,; Z. T. Pu,; Z. H. Lao,; Y. W. Chen,; M. L. Wang,; X. S. Zheng,; J. F. Zhu,; W. H. Zhang, et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411-417.
[150]
S. F. Ji,; Y. J. Chen,; S. Zhao,; W. X. Chen,; L. J. Shi,; Y. Wang,; J. C. Dong,; Z. Li,; F. W. Li,; C. Chen, et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271-4275.
[151]
T. Toyao,; Z. Maeno,; S. Takakusagi,; T. Kamachi,; I. Takigawa,; K. I. Shimizu, Machine learning for catalysis informatics: Recent applications and prospects. ACS Catal. 2020, 10, 2260-2297.
Nano Research
Pages 3165-3182
Cite this article:
Zhang N, Ye C, Yan H, et al. Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13(12): 3165-3182. https://doi.org/10.1007/s12274-020-2994-3
Topics:
Part of a topical collection:

1169

Views

279

Crossref

N/A

Web of Science

269

Scopus

0

CSCD

Altmetrics

Received: 21 June 2020
Revised: 17 July 2020
Accepted: 19 July 2020
Published: 11 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return