AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution

Congcong Xu1Kaiming Zhang2Hongran Yin1Zhefeng Li1Alexey Krasnoslobodtsev3,4Zhen Zheng1Zhouxiang Ji1Sijin Guo1Shanshan Li2Wah Chiu2,5Peixuan Guo1( )
Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA
Nanoimaging Core Facility, Office of Vice-Chancellor for Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
Show Author Information

Graphical Abstract

Abstract

Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.

Electronic Supplementary Material

Download File(s)
12274_2020_2996_MOESM1_ESM.pdf (5.9 MB)

References

[1]
J. J. Shi,; P. W. Kantoff,; R. Wooster,; O. C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.
[2]
E. Blanco,; H. F. Shen,; M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.
[3]
S. M. Kim,; P. H. Faix,; J. E. Schnitzer, Overcoming key biological barriers to cancer drug delivery and efficacy. J. Control. Release 2017, 267, 15-30.
[4]
Z. M. Zhao,; A. Ukidve,; V. Krishnan,; S. Mitragotri, Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 2019, 143, 3-21.
[5]
A. E. Nel,; L. Mädler,; D. Velegol,; T. Xia,; E. M. V. Hoek,; P. Somasundaran,; F. Klaessig,; V. Castranova,; M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.
[6]
S. Merino,; C. Martin,; K. Kostarelos,; M. Prato,; E. Vázquez, Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 2015, 9, 4686-4697.
[7]
W. Yoo,; D. Yoo,; E. Hong,; E. Jung,; Y. Go,; S. V. B. Singh,; G. Khang,; D. Lee, Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy. J. Control. Release 2018, 269, 235-244.
[8]
S. D. Huo,; N. Q. Gong,; Y. Jiang,; F. Chen,; H. B. Guo,; Y. L. Gan,; Z. S. Wang,; A. Herrmann,; X. J. Liang, Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Sci. Adv. 2019, 5, eaaw6264.
[9]
X. J. Cheng,; R. Sun,; L. Yin,; Z. F. Chai,; H. B. Shi,; M. Y. Gao, Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.
[10]
Z. Liu,; M. Xiong,; J. B. Gong,; Y. Zhang,; N. Bai,; Y. P. Luo,; L. Y. Li,; Y. Q. Wei,; Y. H. Liu,; X. Y. Tan, et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun. 2014, 5, 4280.
[11]
J. Q. Lu,; X. S. Liu,; Y. P. Liao,; X. Wang,; A. Ahmed,; W. Jiang,; Y. Ji,; H. Meng,; A. E. Nel, Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 2018, 12, 11041-11061.
[12]
P. Dogra,; N. L. Adolphi,; Z. H. Wang,; Y. S. Lin,; K. S. Butler,; P. N. Durfee,; J. G. Croissant,; A. Noureddine,; E. N. Coker,; E. L. Bearer, et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat. Commun. 2018, 9, 4551.
[13]
P. N. Durfee,; Y. S. Lin,; D. R. Dunphy,; A. J. Muñiz,; K. S. Butler,; K. R. Humphrey,; A. J. Lokke,; J. O. Agola,; S. S. Chou,; I. M. Chen, et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 2016, 10, 8325-8345.
[14]
D. Singh,; P. Dubey,; M. Pradhan,; M. R. Singh, Ceramic nanocarriers: Versatile nanosystem for protein and peptide delivery. Expert Opin. Drug Deliv. 2013, 10, 241-259.
[15]
A. K. Hauser,; M. I. Mitov,; E. F. Daley,; R. C. McGarry,; K. W. Anderson,; J. Z. Hilt, Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 2016, 105, 127-135.
[16]
S. Laurent,; A. A. Saei,; S. Behzadi,; A. Panahifar,; M. Mahmoudi, Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin. Drug Deliv. 2014, 11, 1449-1470.
[17]
S. P. Li,; Q. Jiang,; S. L. Liu,; Y. L. Zhang,; Y. H. Tian,; C. Song,; J. Wang,; Y. G. Zou,; G. J. Anderson,; J. Y. Han, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258-264.
[18]
W. J. Sun,; W. Y. Ji,; J. M. Hall,; Q. Y. Hu,; C. Wang,; C. L. Beisel,; Z. Gu, Self-assembled DNA nanoclews for the efficient delivery of crispr-cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029-12033.
[19]
G. Z. Zhu,; J. Zheng,; E. Q. Song,; M. Donovan,; K. J. Zhang,; C. Liu,; W. H. Tan, Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA 2013, 110, 7998-8003.
[20]
H. Li,; T. Lee,; T. Dziubla,; F. M. Pi,; S. J. Guo,; J. Xu,; C. Li,; F. Haque,; X. J. Liang,; P. X. Guo, RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631-655.
[21]
K. A. Afonin,; W. K. Kasprzak,; E. Bindewald,; M. Kireeva,; M. Viard,; M. Kashlev,; B. A. Shapiro, In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc. Chem. Res. 2014, 47, 1731-1741.
[22]
A. Monferrer,; D. Zhang,; A. J. Lushnikov,; T. Hermann, Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat. Commun. 2019, 10, 608.
[23]
D. Shu,; Y. Shu,; F. Haque,; S. Abdelmawla,; P. X. Guo, Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 2011, 6, 658-667.
[24]
D. Shu,; H. Li,; Y. Shu,; G. F. Xiong,; W. E. Carson III,; F. Haque,; R. Xu,; P. X. Guo, Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 2015, 9, 9731-9740.
[25]
H. R. Yin,; G. F. Xiong,; S. J. Guo,; C. Xu,; R. C. Xu,; P. X. Guo,; D. Shu, Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther. 2019, 27, 1252-1261.
[26]
C. C. Xu,; F. Haque,; D. L. Jasinski,; D. W. Binzel,; D. Shu,; P. X. Guo, Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018, 414, 57-70.
[27]
S. J. Guo,; C. C. Xu,; H. R. Yin,; J. Hill,; F. M. Pi,; P. X. Guo, Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WIREs Nanomedicine Nanobiotechnol. 2020, 12, e1582.
[28]
D. Jasinski,; F. Haque,; D. W. Binzel,; P. X. Guo, Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017, 11, 1142-1164.
[29]
Y. T. E. Chiu,; H. Z. Li,; C. H. J. Choi, Progress toward understanding the interactions between DNA nanostructures and the cell. Small 2019, 15, 1805416.
[30]
D. L. Jasinski,; H. Li,; P. X. Guo, The effect of size and shape of RNA nanoparticles on biodistribution. Mol. Ther. 2018, 26, 784-792.
[31]
D. L. Jasinski,; H. R. Yin,; Z. F. Li,; P. X. Guo, Hydrophobic effect from conjugated chemicals or drugs on in vivo biodistribution of rna nanoparticles. Hum. Gene Ther. 2018, 29, 77-86.
[32]
A. Albanese,; P. S. Tang,; W. C. W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1-16.
[33]
C. R. Anderson,; Y. D. M. Gnopo,; F. Gambinossi,; S. E. Mylon,; J. K. Ferri, Modulation of cell responses to Ag-(MeO2MA-co-OEGMA): Effects of nanoparticle surface hydrophobicity and serum proteins on cellular uptake and toxicity. J. Biomed. Mater. Res. A 2018, 106, 1061-1071.
[34]
E. Tan,; T. J. Wilson,; M. K. Nahas,; R. M. Clegg,; D. M. J. Lilley,; T. Ha, A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc. Natl. Acad. Sci. USA 2003, 100, 9308-9313.
[35]
J. M. Diamond,; D. H. Turner,; D. H. Mathews, Thermodynamics of three-way multibranch loops in RNA. Biochemistry 2001, 40, 6971-6981.
[36]
K. Benkato,; B. O'Brien,; M. N. Bui,; D. L. Jasinski,; P. X. Guo,; E. F. Khisamutdinov, Evaluation of thermal stability of RNA nanoparticles by temperature gradient gel electrophoresis (TGGE) in native condition. In RNA Nanostructures. E. Bindewald,; B. A. Shapiro,, Eds.; Humana Press: New York, 2017; pp 123-133.
[37]
O. Birkholz,; J. R. Burns,; C. P. Richter,; O. E. Psathaki,; S. Howorka,; J. Piehler, Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 2018, 9, 1521.
[38]
R. E. Infante,; A. Radhakrishnan, Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. eLife 2017, 6, e25466.
[39]
Z. Gerstle,; R. Desai,; S. L. Veatch, Giant plasma membrane vesicles: An experimental tool for probing the effects of drugs and other conditions on membrane domain stability. Methods Enzymol. 2018, 603, 129-150.
[40]
E. Sezgin,; H. J. Kaiser,; T. Baumgart,; P. Schwille,; K. Simons,; I. Levental, Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012, 7, 1042-1051.
[41]
C. M. Lin,; C. S. Li,; Y. J. Sheng,; D. T. Wu,; H. K. Tsao, Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir 2012, 28, 689-700.
[42]
J. Adler,; I. Parmryd, Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the mander's overlap coefficient. Cytometry A 2010, 77A, 733-742.
[43]
K. W. Dunn,; M. M. Kamocka,; J. H. McDonald, A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011, 300, C723-C742.
[44]
Y. M. Zhou,; Z. F. Dai, New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem. Asian J. 2018, 13, 3333-3340.
[45]
M. P. Monopoli,; C. Åberg,; A. Salvati,; K. A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779-786.
[46]
M. P. Monopoli,; D. Walczyk,; A. Campbell,; G. Elia,; I. Lynch,; F. B. Bombelli,; K. A. Dawson, Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525-2534.
[47]
A. A. Saie,; M. Ray,; M. Mahmoudi,; V. M. Rotello, Engineering the nanoparticle-protein interface for cancer therapeutics. In Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. C. A. Mirkin,; T. J. Meade,; S. H. Petrosko,; A. H. Stegh,, Eds.; Springer: Cham, 2015; pp 245-273.
[48]
G. Caracciolo,; O. C. Farokhzad,; M. Mahmoudi, Biological identity of nanoparticles in vivo: Clinical implications of the protein corona. Trends Biotechnol. 2017, 35, 257-264.
[49]
K. M. Tsoi,; S. A. MacParland,; X. Z. Ma,; V. N. Spetzler,; J. Echeverri,; B. Ouyang,; S. M. Fadel,; E. A. Sykes,; N. Goldaracena,; J. M. Kaths, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212-1221.
[50]
Y. N. Zhang,; W. Poon,; A. J. Tavares,; I. D. McGilvray,; W. C. W. Chan, Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332-348.
[51]
S. Tenzer,; D. Docter,; J. Kuharev,; A. Musyanovych,; V. Fetz,; R. Hecht,; F. Schlenk,; D. Fischer,; K. Kiouptsi,; C. Reinhardt, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772-781.
[52]
B. J. Du,; M. X. Yu,; J. Zheng, Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018, 3, 358-374.
[53]
B. J. Du,; X. Y. Jiang,; A. Das,; Q. H. Zhou,; M. X. Yu,; R. C. Jin,; J. Zheng, Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096-1102.
[54]
Z. Amoozgar,; Y. Yeo, Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 219-233.
[55]
N. Hoshyar,; S. Gray,; H. B. Han,; G. Bao, The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016, 11, 673-692.
Nano Research
Pages 3241-3247
Cite this article:
Xu C, Zhang K, Yin H, et al. 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution. Nano Research, 2020, 13(12): 3241-3247. https://doi.org/10.1007/s12274-020-2996-1
Topics:

763

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 09 June 2020
Revised: 16 July 2020
Accepted: 18 July 2020
Published: 04 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return