AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters

Zhen Han§Xueli Zhao§Peng PengSi LiChong ZhangMan CaoKai LiZhao-Yang Wang( )Shuang-Quan Zang( )
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§Zhen Han and Xueli Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Herein, we prepared two novel pairs of enantiomeric gold cluster complexes, Au4PL4/Au4PD4 and (Au4L4)n/(Au4D4)n with atomic precision. In Au4PL4/Au4PD4, the discrete chiral Au4-based aggregation-induced emission (AIE) luminogens are separated by bulky substitutes. The corresponding aggregates are cyan-emitting with a photoluminescence quantum yield (PLQY) of 14.4%. Upon decreasing the size of the substituents, these chiral Au4 clusters are strung together by inter-cluster Au-Au interactions, which cause a low-energy green emission from the aggregated (Au4L4)n/(Au4D4)n with a much higher PLQY of 41.4% and more intense circularly polarised photoluminescence (CPL) with a dissymmetry factor |gPL| of 7.0 × 10-3. Using (Au4L4)n/(Au4D4)n, circularly polarised organic light-emitting diodes (CP-OLEDs) were for the first time fabricated with |gEL| = |gPL|. These findings signify that inter-cluster metallophilic interactions are a new and important type of driving force for AIE and crystallization-induced emission (CIE), suggesting great potential of CPL-active metal clusters in CP-OLEDs.

Electronic Supplementary Material

Download File(s)
12274_2020_2997_MOESM1_ESM.pdf (6.6 MB)
12274_2020_2997_MOESM2_ESM.pdf (250.8 KB)
12274_2020_2997_MOESM3_ESM.pdf (253 KB)
12274_2020_2997_MOESM4_ESM.pdf (192.8 KB)
12274_2020_2997_MOESM5_ESM.pdf (159.4 KB)
12274_2020_2997_MOESM6_ESM.cif (2 MB)
12274_2020_2997_MOESM7_ESM.cif (1.9 MB)
12274_2020_2997_MOESM8_ESM.cif (1.4 MB)
12274_2020_2997_MOESM9_ESM.cif (2 MB)

References

[1]
C. N. Loynachan,; A. P. Soleimany,; J. S. Dudani,; Y. Y. Lin,; A. Najer,; A. Bekdemir,; Q. Chen,; S. N. Bhatia,; M. M. Stevens, Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883-890.
[2]
T. T. Jia,; G. Yang,; S. J. Mo,; Z. Y. Wang,; B. J. Li,; W. Ma,; Y. X. Guo,; X. Y. Chen,; X. L. Zhao,; J. Q. Liu, et al. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 2019, 13, 8320-8328.
[3]
L. Y. Yao,; V. W. W. Yam, Photoinduced isomerization-driven structural transformation between decanuclear and octadecanuclear gold(I) sulfido clusters. J. Am. Chem. Soc. 2015, 137, 3506-3509.
[4]
S. S. Zhang,; L. Feng,; R. D. Senanayake,; C. M. Aikens,; X. P. Wang,; Q. Q. Zhao,; C. H. Tung,; D. Sun, Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251-1258.
[5]
L. X. Li,; S. S. Huang,; J. J. Song,; N. T. Yang,; J. W. Liu,; Y. Y. Chen,; Y. H. Sun,; R. C. Jin,; Y. Zhu, Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182-1192.
[6]
H. Shen,; S. J. Xiang,; Z. Xu,; C. Liu,; X. H. Li,; C. F. Sun,; S. C. Lin,; B. K. Teo,; N. F. Zheng, Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908-1911.
[7]
S. S. Zhang,; R. D. Senanayake,; Q. Q. Zhao,; H. F. Su,; C. M. Aikens,; X. P. Wang,; C. H. Tung,; D. Sun,; L. S. Zheng, [Au18(dppm)6Cl4]4+: A phosphine-protected gold nanocluster with rich charge states. Dalton Trans. 2019, 48, 3635-3640.
[8]
Z. L. Wu,; D. R. Mullins,; L. F. Allard,; Q. F. Zhang,; L. S. Wang, CO oxidation over ceria supported Au22 nanoclusters: Shape effect of the support. Chin. Chem. Lett. 2018, 29, 795-799.
[9]
K. Zheng,; J. W. Zhang,; D. Zhao,; Y. Yang,; Z. M. Li,; G. Li, Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501-507.
[10]
J. Mei,; N. L. C. Leung,; R. T. K. Kwok,; J. W. Y. Lam,; B. Z. Tang, Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
[11]
T. Chen,; S. Yang,; J. S. Chai,; Y. B. Song,; J. Q. Fan,; B. Rao,; H. T. Sheng,; H. Z. Yu,; M. Z. Zhu, Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.
[12]
H. K. Zhang,; Z. Zhao,; P. R. McGoniga,; R. Q. Ye,; S. J. Liu,; J. W. Y. Lam,; R. T. K. Kwok,; W. Z. Yuan,; J. P. Xie,; A. L. Rogach, et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275-292.
[13]
M. M. Zhang,; K. Li,; S. Q. Zang, Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence. Adv. Opt. Mater. 2020, 8, 1902152.
[14]
X. Kang,; S. X. Wang,; Y. B. Song,; S. Jin,; G. D. Sun,; H. Z. Yu,; M. Z. Zhu, Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew. Chem., Int. Ed. 2016, 55, 3611-3614.
[15]
W. X. Ni,; Y. M. Qiu,; M. Li,; J. Zheng,; R. W. Y. Sun,; S. Z. Zhan,; S. W. Ng,; D. Li, Metallophilicity-driven dynamic aggregation of a phosphorescent gold(I)-silver(I) cluster prepared by solution-based and mechanochemical approaches. J. Am. Chem. Soc. 2014, 136, 9532-9535.
[16]
X. Y. Dou,; X. Yuan,; Y. Yu,; Z. T. Luo,; Q. F. Yao,; D. T. Leong,; J. P. Xie, Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157-161.
[17]
Z. T. Luo,; X. Yuan,; Y. Yu,; Q. B. Zhang,; D. T. Leong,; J. Y. Lee,; J. P. Xie, From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
[18]
N. Goswami,; Q. F. Yao,; Z. T. Luo,; J. G. Li,; T. K. Chen,; J. P. Xie, Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962-975.
[19]
Z. N. Wu,; Y. H. Du,; J. L. Liu,; Q. F. Yao,; T. K. Chen,; Y. T. Cao,; H. Zhang,; J. P. Xie, Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139-8144.
[20]
T. M. Dau,; Y. A. Chen,; A. J. Karttunen,; E. V. Grachova,; S. P. Tunik,; K. T. Lin,; W. Y. Hung,; P. T. Chou,; T. A. Pakkanen,; I. O. Koshevoy, Tetragold(I) complexes: Solution isomerization and tunable solid-state luminescence. Inorg. Chem. 2014, 53, 12720-12731.
[21]
H. Schmidbaur,; A. Schier, Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370-412.
[22]
Q. Liu,; M. Xie,; X. Y. Chang,; S. Cao,; C. Zou,; W. F. Fu,; C. M. Che,; Y. Chen,; W. Lu, Tunable multicolor phosphorescence of crystalline polymeric complex salts with metallophilic backbones. Angew. Chem., Int. Ed. 2018, 57, 6279-6283.
[23]
F. K. W. Hau,; T. K. M. Lee,; E. C. C. Cheng,; V. K. M. Au,; V. W. W. Yam, Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(I) sulfido complexes. Proc. Natl. Acad. Soc. USA 2014, 111, 15900-15905.
[24]
M. Sugiuchi,; J. Maeba,; N. Okubo,; M. Iwamura,; K. Nozaki,; K. Konishi, Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 2017, 139, 17731-17734.
[25]
J. Zhang,; Q. M. Liu,; W. J. Wu,; J. H. Peng,; H. K. Zhang,; F. Y. Song,; B. Z. He,; X. Y. Wang,; H. H. Y. Sung,; M. Chen, et al. Real-time monitoring of hierarchical self-assembly and induction of circularly polarized luminescence from achiral luminogens. ACS Nano 2019, 13, 3618-3628.
[26]
U. Tohgha,; K. K. Deol,; A. G. Porter,; S. G. Bartko,; J. K. Choi,; B. M. Leonard,; K. Varga,; J. Kubelka,; G. Muller,; M. Balaz, Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 2013, 7, 11094-11102.
[27]
M. M. Zhang,; X. Y. Dong,; Z. Y. Wang,; H. Y. Li,; S. J. Li,; X. L. Zhao,; S. Q. Zang, AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052-10058.
[28]
Q. Li,; M. Zhou,; W. Y. So,; J. C. Huang,; M. X. Li,; D. R. Kauffman,; M. Cotlet,; T. Higaki,; L. A. Peteanu,; Z. Z. Shao, et al. A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc. 2019, 141, 5314-5325.
[29]
Z. Han,; X. Y. Dong,; P. Luo,; S. Li,; Z. Y. Wang,; S. Q. Zang; T. C. W. Mak, Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.
[30]
L. Shi,; L. Y. Zhu,; J. Guo,; L. J. Zhang,; Y. N. Shi,; Y. Zhang,; K. Hou,; Y. L. Zheng,; Y. F. Zhu,; J. W. Lv, et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem., Int. Ed. 2017, 56, 15397-15401.
[31]
Y. T. Sang,; J. L. Han,; T. H. Zhao,; P. F. Duan,; M. H. Liu, Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater., in press, .
[32]
Y. F. Zhu,; H. Wang,; K. W. Wan,; J. Guo,; C. T. He,; Y. Yu,; L. Y. Zhao,; Y. Zhang,; J. W. Lv,; L. Shi, et al. Enantioseparation of Au20(PP3)4Cl4 clusters with intrinsically chiral cores. Angew. Chem., Int. Ed. 2018, 57, 9059-9063.
[33]
C. J. Zeng,; T. Li,; A. Das,; N. L. Rosi,; R. C. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011-10013.
[34]
D. Crasto,; S. Malola,; G. Brosofsky,; A. Dass,; H. Häkkinen, Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000-5005.
[35]
S. Knoppe,; R. Azoulay,; A. Dass,; T. Bürgi, In situ reaction monitoring reveals a diastereoselective ligand exchange reaction between the intrinsically chiral Au38(SR)24 and chiral thiols. J. Am. Chem. Soc. 2012, 134, 20302-20305.
[36]
C. J. Zeng,; Y. X. Chen,; K. Kirschbaum,; K. Appavoo,; M. Y. Sfeir,; R. C. Jin, Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 2015, 1, e1500045.
[37]
D. Delaunay,; L. Toupet,; M. Le Corre, Reactivity of .beta. -amino alcohols with carbon disulfide study on the synthesis of 2-oxazolidinethiones and 2-thiazolidinethiones. J. Org. Chem. 1995, 60, 6604-6607.
[38]
A. Vogler,; H. Kunkely, Absorption and emission spectra of tetrameric gold(I) complexes. Chem. Phys. Lett. 1988, 150, 135-137.
[39]
O. Piovesana,; P. F. Zanazzi, Gold(I)-gold(I) interactions. Tetrameric gold(I) dithioacetate. Angew. Chem., Int. Ed. 1980, 19, 561-562.
[40]
M. Olaru,; E. Rychagova,; S. Ketkov,; Y. Shynkarenko,; S. Yakunin,; M. V. Kovalenko,; A. Yablonskiy,; B. Andreev,; F. Kleemiss,; J. Beckmann, et al. A small cationic organo-copper cluster as thermally robust highly photo- and electroluminescent material. J. Am. Chem. Soc. 2020, 142, 373-381.
[41]
F. Y. Song,; Z. Xu,; Q. S. Zhang,; Z. Zhao,; H. K. Zhang,; W. J. Zhao,; Z. Qiu,; C. X. Qi,; H. Zhang,; H. H. Y. Sung, et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv. Funct. Mater. 2018, 28, 1800051.
[42]
Z. G. Wu,; H. B. Han,; Z. P. Yan,; X. F. Luo,; Y. Wang,; Y. X. Zheng,; J. L. Zuo,; Y. Pan, Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 2019, 31, 1900524.
[43]
F. Zinna,; U. Giovanella,; L. di Bari, Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 2015, 27, 1791-1795.
[44]
J. Zhang,; C. B. Duan,; C. M. Han,; H. Yang,; Y. Wei,; H. Xu, Balanced dual emissions from tridentate phosphine-coordinate copper(I) complexes toward highly efficient yellow OLEDs. Adv. Mater. 2016, 28, 5975-5979.
[45]
L. Yang,; Y. Zhang,; X. Y. Zhang,; N. Q. Li,; Y. W. Quan,; Y. X. Cheng, Doping-free circularly polarized electroluminescence of AIE-active chiral binaphthyl-based polymers. Chem. Commun. 2018, 54, 9663-9666.
[46]
D. W. Zhang,; M. Li,; C. F. Chen, Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331-1343.
Nano Research
Pages 3248-3252
Cite this article:
Han Z, Zhao X, Peng P, et al. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Research, 2020, 13(12): 3248-3252. https://doi.org/10.1007/s12274-020-2997-0
Topics:

928

Views

59

Crossref

N/A

Web of Science

57

Scopus

10

CSCD

Altmetrics

Received: 27 June 2020
Revised: 18 July 2020
Accepted: 20 July 2020
Published: 25 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return