[1]
C. N. Loynachan,; A. P. Soleimany,; J. S. Dudani,; Y. Y. Lin,; A. Najer,; A. Bekdemir,; Q. Chen,; S. N. Bhatia,; M. M. Stevens, Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883-890.
[2]
T. T. Jia,; G. Yang,; S. J. Mo,; Z. Y. Wang,; B. J. Li,; W. Ma,; Y. X. Guo,; X. Y. Chen,; X. L. Zhao,; J. Q. Liu, et al. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 2019, 13, 8320-8328.
[3]
L. Y. Yao,; V. W. W. Yam, Photoinduced isomerization-driven structural transformation between decanuclear and octadecanuclear gold(I) sulfido clusters. J. Am. Chem. Soc. 2015, 137, 3506-3509.
[4]
S. S. Zhang,; L. Feng,; R. D. Senanayake,; C. M. Aikens,; X. P. Wang,; Q. Q. Zhao,; C. H. Tung,; D. Sun, Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251-1258.
[5]
L. X. Li,; S. S. Huang,; J. J. Song,; N. T. Yang,; J. W. Liu,; Y. Y. Chen,; Y. H. Sun,; R. C. Jin,; Y. Zhu, Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182-1192.
[6]
H. Shen,; S. J. Xiang,; Z. Xu,; C. Liu,; X. H. Li,; C. F. Sun,; S. C. Lin,; B. K. Teo,; N. F. Zheng, Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908-1911.
[7]
S. S. Zhang,; R. D. Senanayake,; Q. Q. Zhao,; H. F. Su,; C. M. Aikens,; X. P. Wang,; C. H. Tung,; D. Sun,; L. S. Zheng, [Au18(dppm)6Cl4]4+: A phosphine-protected gold nanocluster with rich charge states. Dalton Trans. 2019, 48, 3635-3640.
[8]
Z. L. Wu,; D. R. Mullins,; L. F. Allard,; Q. F. Zhang,; L. S. Wang, CO oxidation over ceria supported Au22 nanoclusters: Shape effect of the support. Chin. Chem. Lett. 2018, 29, 795-799.
[9]
K. Zheng,; J. W. Zhang,; D. Zhao,; Y. Yang,; Z. M. Li,; G. Li, Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501-507.
[10]
J. Mei,; N. L. C. Leung,; R. T. K. Kwok,; J. W. Y. Lam,; B. Z. Tang, Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
[11]
T. Chen,; S. Yang,; J. S. Chai,; Y. B. Song,; J. Q. Fan,; B. Rao,; H. T. Sheng,; H. Z. Yu,; M. Z. Zhu, Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.
[12]
H. K. Zhang,; Z. Zhao,; P. R. McGoniga,; R. Q. Ye,; S. J. Liu,; J. W. Y. Lam,; R. T. K. Kwok,; W. Z. Yuan,; J. P. Xie,; A. L. Rogach, et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275-292.
[13]
M. M. Zhang,; K. Li,; S. Q. Zang, Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence. Adv. Opt. Mater. 2020, 8, 1902152.
[14]
X. Kang,; S. X. Wang,; Y. B. Song,; S. Jin,; G. D. Sun,; H. Z. Yu,; M. Z. Zhu, Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew. Chem., Int. Ed. 2016, 55, 3611-3614.
[15]
W. X. Ni,; Y. M. Qiu,; M. Li,; J. Zheng,; R. W. Y. Sun,; S. Z. Zhan,; S. W. Ng,; D. Li, Metallophilicity-driven dynamic aggregation of a phosphorescent gold(I)-silver(I) cluster prepared by solution-based and mechanochemical approaches. J. Am. Chem. Soc. 2014, 136, 9532-9535.
[16]
X. Y. Dou,; X. Yuan,; Y. Yu,; Z. T. Luo,; Q. F. Yao,; D. T. Leong,; J. P. Xie, Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157-161.
[17]
Z. T. Luo,; X. Yuan,; Y. Yu,; Q. B. Zhang,; D. T. Leong,; J. Y. Lee,; J. P. Xie, From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
[18]
N. Goswami,; Q. F. Yao,; Z. T. Luo,; J. G. Li,; T. K. Chen,; J. P. Xie, Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962-975.
[19]
Z. N. Wu,; Y. H. Du,; J. L. Liu,; Q. F. Yao,; T. K. Chen,; Y. T. Cao,; H. Zhang,; J. P. Xie, Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139-8144.
[20]
T. M. Dau,; Y. A. Chen,; A. J. Karttunen,; E. V. Grachova,; S. P. Tunik,; K. T. Lin,; W. Y. Hung,; P. T. Chou,; T. A. Pakkanen,; I. O. Koshevoy, Tetragold(I) complexes: Solution isomerization and tunable solid-state luminescence. Inorg. Chem. 2014, 53, 12720-12731.
[21]
H. Schmidbaur,; A. Schier, Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370-412.
[22]
Q. Liu,; M. Xie,; X. Y. Chang,; S. Cao,; C. Zou,; W. F. Fu,; C. M. Che,; Y. Chen,; W. Lu, Tunable multicolor phosphorescence of crystalline polymeric complex salts with metallophilic backbones. Angew. Chem., Int. Ed. 2018, 57, 6279-6283.
[23]
F. K. W. Hau,; T. K. M. Lee,; E. C. C. Cheng,; V. K. M. Au,; V. W. W. Yam, Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(I) sulfido complexes. Proc. Natl. Acad. Soc. USA 2014, 111, 15900-15905.
[24]
M. Sugiuchi,; J. Maeba,; N. Okubo,; M. Iwamura,; K. Nozaki,; K. Konishi, Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 2017, 139, 17731-17734.
[25]
J. Zhang,; Q. M. Liu,; W. J. Wu,; J. H. Peng,; H. K. Zhang,; F. Y. Song,; B. Z. He,; X. Y. Wang,; H. H. Y. Sung,; M. Chen, et al. Real-time monitoring of hierarchical self-assembly and induction of circularly polarized luminescence from achiral luminogens. ACS Nano 2019, 13, 3618-3628.
[26]
U. Tohgha,; K. K. Deol,; A. G. Porter,; S. G. Bartko,; J. K. Choi,; B. M. Leonard,; K. Varga,; J. Kubelka,; G. Muller,; M. Balaz, Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 2013, 7, 11094-11102.
[27]
M. M. Zhang,; X. Y. Dong,; Z. Y. Wang,; H. Y. Li,; S. J. Li,; X. L. Zhao,; S. Q. Zang, AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052-10058.
[28]
Q. Li,; M. Zhou,; W. Y. So,; J. C. Huang,; M. X. Li,; D. R. Kauffman,; M. Cotlet,; T. Higaki,; L. A. Peteanu,; Z. Z. Shao, et al. A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc. 2019, 141, 5314-5325.
[29]
Z. Han,; X. Y. Dong,; P. Luo,; S. Li,; Z. Y. Wang,; S. Q. Zang; T. C. W. Mak, Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.
[30]
L. Shi,; L. Y. Zhu,; J. Guo,; L. J. Zhang,; Y. N. Shi,; Y. Zhang,; K. Hou,; Y. L. Zheng,; Y. F. Zhu,; J. W. Lv, et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem., Int. Ed. 2017, 56, 15397-15401.
[31]
Y. T. Sang,; J. L. Han,; T. H. Zhao,; P. F. Duan,; M. H. Liu, Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater., in press, .
[32]
Y. F. Zhu,; H. Wang,; K. W. Wan,; J. Guo,; C. T. He,; Y. Yu,; L. Y. Zhao,; Y. Zhang,; J. W. Lv,; L. Shi, et al. Enantioseparation of Au20(PP3)4Cl4 clusters with intrinsically chiral cores. Angew. Chem., Int. Ed. 2018, 57, 9059-9063.
[33]
C. J. Zeng,; T. Li,; A. Das,; N. L. Rosi,; R. C. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011-10013.
[34]
D. Crasto,; S. Malola,; G. Brosofsky,; A. Dass,; H. Häkkinen, Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000-5005.
[35]
S. Knoppe,; R. Azoulay,; A. Dass,; T. Bürgi, In situ reaction monitoring reveals a diastereoselective ligand exchange reaction between the intrinsically chiral Au38(SR)24 and chiral thiols. J. Am. Chem. Soc. 2012, 134, 20302-20305.
[36]
C. J. Zeng,; Y. X. Chen,; K. Kirschbaum,; K. Appavoo,; M. Y. Sfeir,; R. C. Jin, Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 2015, 1, e1500045.
[37]
D. Delaunay,; L. Toupet,; M. Le Corre, Reactivity of .beta. -amino alcohols with carbon disulfide study on the synthesis of 2-oxazolidinethiones and 2-thiazolidinethiones. J. Org. Chem. 1995, 60, 6604-6607.
[38]
A. Vogler,; H. Kunkely, Absorption and emission spectra of tetrameric gold(I) complexes. Chem. Phys. Lett. 1988, 150, 135-137.
[39]
O. Piovesana,; P. F. Zanazzi, Gold(I)-gold(I) interactions. Tetrameric gold(I) dithioacetate. Angew. Chem., Int. Ed. 1980, 19, 561-562.
[40]
M. Olaru,; E. Rychagova,; S. Ketkov,; Y. Shynkarenko,; S. Yakunin,; M. V. Kovalenko,; A. Yablonskiy,; B. Andreev,; F. Kleemiss,; J. Beckmann, et al. A small cationic organo-copper cluster as thermally robust highly photo- and electroluminescent material. J. Am. Chem. Soc. 2020, 142, 373-381.
[41]
F. Y. Song,; Z. Xu,; Q. S. Zhang,; Z. Zhao,; H. K. Zhang,; W. J. Zhao,; Z. Qiu,; C. X. Qi,; H. Zhang,; H. H. Y. Sung, et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv. Funct. Mater. 2018, 28, 1800051.
[42]
Z. G. Wu,; H. B. Han,; Z. P. Yan,; X. F. Luo,; Y. Wang,; Y. X. Zheng,; J. L. Zuo,; Y. Pan, Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 2019, 31, 1900524.
[43]
F. Zinna,; U. Giovanella,; L. di Bari, Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 2015, 27, 1791-1795.
[44]
J. Zhang,; C. B. Duan,; C. M. Han,; H. Yang,; Y. Wei,; H. Xu, Balanced dual emissions from tridentate phosphine-coordinate copper(I) complexes toward highly efficient yellow OLEDs. Adv. Mater. 2016, 28, 5975-5979.
[45]
L. Yang,; Y. Zhang,; X. Y. Zhang,; N. Q. Li,; Y. W. Quan,; Y. X. Cheng, Doping-free circularly polarized electroluminescence of AIE-active chiral binaphthyl-based polymers. Chem. Commun. 2018, 54, 9663-9666.
[46]
D. W. Zhang,; M. Li,; C. F. Chen, Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331-1343.