AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Water-soluble boron carbon oxynitride dots with excellent solid-state fluorescence and ultralong room-temperature phosphorescence

Shenghui Han1Gang Lian1( )Xiaoliang Zeng2Zhaozhen Cao3Qilong Wang3Deliang Cui1Ching-Ping Wong4( )
State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, China
School of Materials Science and Engineering, Georgia Institute of Technology, Georgia 30332, USA
Show Author Information

Graphical Abstract

Abstract

Developing metal-free and long lifetime room-temperature phosphorescence (RTP) materials has received tremendous interest due to their numerous potential applications, of which stable triplet-excited state is the core challenge. Here, boron carbon oxynitride (BCNO) dots, emitting stable blue fluorescence and green RTP, are reported for the first time. The obtained BCNO dots exhibit an unexpected ultralong RTP lifetime of 1.57 s, lasting over 8 s to naked eyes. The effective doping of carbon and oxygen elements in boron nitride (BN) actually provides a small energy gap between singlet and triplet states, facilitating the intersystem crossing (ISC) and populating of triplet excitons. The formation of compact cores via crystallization and effective inter-/intra-dot hydrogen bonds further stabilizes the excited triplet states and reduces quenching of RTP by oxygen at room temperature. Based on the water-soluble feature of BCNO dots, a novel advanced security ink is developed toward anti-counterfeiting tag and confidential information encryption. This study extends BCNO dots to rarely exploited phosphorescence fields and also provides a facile strategy to prepare ultralong lifetime metal-free RTP materials.

Electronic Supplementary Material

Video
12274_2020_2999_MOESM2_ESM.mp4
Download File(s)
12274_2020_2999_MOESM1_ESM.pdf (2.9 MB)

References

[1]
P. K. Chow,; G. Cheng,; G. S. M. Tong,; C. S. Ma,; W. M. Kwok,; W. H. Ang,; C. Y. S. Chung,; C. Yang,; F. Wang,; C. M. Che, Highly luminescent palladium(II) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chem. Sci. 2016, 7, 6083-6098.
[2]
S. M. A. Fateminia,; Z. Mao,; S. D. Xu,; Z. Y. Yang,; Z. G. Chi,; B. Liu, Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem., Int. Ed. 2017, 56, 12160-12164.
[3]
K. Jiang,; Y. H. Wang,; C. Z. Cai,; H. W. Lin, Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 1800783.
[4]
Q. J. Li,; M. Zhou,; M. Y. Yang,; Q. F. Yang,; Z. X. Zhang,; J. Shi, Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 2018, 9, 734.
[5]
W. Li,; W. Zhou,; Z. S. Zhou,; H. R. Zhang,; X. J. Zhang,; J. L. Zhuang,; Y. L. Liu,; B. F. Lei,; C. F. Hu, A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed. 2019, 58, 7278-7283.
[6]
P. Long,; Y. Y. Feng,; C. Cao,; Y. Li,; J. K. Han,; S. W. Li,; C. Peng,; Z. Y Li,; W. Feng, Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.
[7]
J. Yang,; X. Zhen,; B. Wang,; X. M. Gao,; Z. C. Ren,; J. Q. Wang,; Y. J. Xie,; J. R. Li,; Q. Peng,; K. Y. Pu, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840.
[8]
Z. F. An,; C. Zheng,; Y. Tao,; R. F. Chen,; H. F. Shi,; T. Chen,; Z. X. Wang,; H. H. Li,; R. R. Deng,; X. G. Liu, et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685-690.
[9]
O. Bolton,; K. Lee,; H. J. Kim,; K. Y. Lin,; J. Kim, Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 415.
[10]
Q. Q. Li,; Z. Li, The strong light-emission materials in the aggregated state: What happens from a single molecule to the collective group. Adv. Sci. 2017, 4, 1600484.
[11]
Q. Q. Li,; Y. H. Tang,; W. P. Hu,; Z. Li, Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress. Small 2018, 14, 1801560.
[12]
L. Xiao,; H. B. Fu, Enhanced room-temperature phosphorescence through intermolecular halogen/hydrogen bonding. Chem.—Eur. J. 2019, 25, 714-723.
[13]
S. Z. Cai,; H. F. Shi,; J. W. Li,; L. Gu,; Y. Ni,; Z. C. Cheng,; S. Wang,; W. W. Xiong,; L. Li,; Z. F. An, et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater. 2017, 29, 1701244.
[14]
X. L. Yang,; B. Jiao,; J. S. Dang,; Y. H. Sun,; Y. Wu,; G. J. Zhou,; W. Y. Wong, Achieving high-performance solution-processed orange OLEDs with the phosphorescent cyclometalated trinuclear Pt(II) complex. ACS Appl. Mater. Interfaces 2018, 10, 10227-10235.
[15]
Y. Xiong,; Z. Zhao,; W. J. Zhao,; H. L. Ma,; Q. Peng,; Z. K. He,; X. P. Zhang,; Y. C. Chen,; X. Q. He,; J. W. Y. Lam, et al. Designing efficient and ultralong pure organic room-temperature phosphorescent materials by structural isomerism. Angew. Chem., Int. Ed. 2018, 57, 7997-8001.
[16]
Q. J. Li,; M. Zhou,; Q. F. Yang,; Q. Wu,; J. Shi,; A. H. Gong,; M. Y. Yang, Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 2016, 28, 8221-8227.
[17]
C. J. Lin,; Y. X. Zhuang,; W. H. Li,; T. L. Zhou,; R. J. Xie, Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584-6590.
[18]
L. X. Lin,; Y. X. Xu,; S. W. Zhang,; I. M. Ross,; A. C. M. Ong,; D. A. Allwood, Fabrication and luminescence of monolayered boron nitride quantum dots. Small 2014, 10, 60-65.
[19]
M. L. Liu,; Y. H. Xu,; Y. Wang,; X. Chen,; X. Q. Ji,; F. S. Niu,; Z. Q. Song,; J. Q. Liu, Boron nitride quantum dots with solvent-regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications. Adv. Opt. Mater. 2017, 5, 1600661.
[20]
B. B. Huo,; B. P. Liu,; T. Chen,; L. Cui,; G. F. Xu,; M. L. Liu,; J. Q. Liu, One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir 2017, 33, 10673-10678.
[21]
T. Ogi,; Y. Kaihatsu,; F. Iskandar,; W. N. Wang,; K. Okuyama, Facile synthesis of new full-color-emitting BCNO phosphors with high quantum efficiency. Adv. Mater. 2008, 20, 3235-3238.
[22]
A. Katzir,; J. T. Suss,; A. Zunger,; A. Halperin, Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B. 1975, 11, 2370-2377.
[23]
Z. Zunger,; A. Katzir, Point defects in hexagonal boron nitride. II. Theoretical studies. Phys. Rev. B. 1975, 11, 2378-2390.
[24]
W. N. Wang,; T. Ogi,; Y. Kaihatsu,; F. Iskandar,; K. Okuyama, Novel rare-earth-free tunable-color-emitting BCNO phosphors. J. Mater. Chem. 2011, 21, 5183-5189.
[25]
X. F. Liu,; Y. B. Qiao,; G. P. Dong,; S. Ye,; B. Zhu,; Y. X. Zhuang,; J. R. Qiu, BCNO-based long-persistent phosphor. J. Electrochem. Soc. 2009, 156, 81-84.
[26]
K. Jiang,; Y. H. Wang,; X. L. Gao,; C. Z. Cai,; H. W. Lin, Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216-6220.
[27]
J. Y. Zhang,; X. M. Lu,; D. D. Tang,; S. H. Wu,; X. D. Hou,; J. W. Liu,; P. Wu, Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808-40814.
[28]
B. Zhou,; D. P. Yan, Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted förster resonance energy transfer. Adv. Funct. Mater. 2019, 29, 1807599.
[29]
W. W. Lei,; V. N. Mochalin,; D. Liu,; S. Qin,; Y. Gogotsi,; Y. Chen, Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.
[30]
G. Lian,; X. Zhang,; S. J. Zhang,; D. Liu,; D. L. Cui,; Q. L. Wang, Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy Environ. Sci. 2012, 5, 7072-7080.
[31]
C. C. Tang,; Y. Bando,; C. Y. Zhi,; D. Golberg, Boron-oxygen luminescence centres in boron-nitrogen systems. Chem. Commun. 2007, 4599-4601.
[32]
W. W. Lei,; D. Portehault,; D. Liu,; S. Qin,; Y. Chen, Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013, 4, 1777.
[33]
W. W. Lei,; D. Portehault,; R. Dimova,; M. Antonietti, Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121-7127.
[34]
Q. H. Yao,; Y. F. Feng,; M. C. Rong,; S. G. He,; X. Chen, Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Microchim. Acta 2017, 184, 4217-4223.
[35]
P. Thangasamy,; M. Santhanam,; M. Sathish, Supercritical fluid facilitated disintegration of hexagonal boron nitride nanosheets to quantum dots and its application in cells imaging. ACS Appl. Mater. Interfaces 2016, 8, 18647-18651.
[36]
C. J. Huang,; C. Chen,; M. W. Zhang,; L. H. Lin,; X. X. Ye,; S. Lin,; M. Antonietti,; X. C. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 2015, 6, 7698.
[37]
H. L Li,; R. Y. Tay,; S. H. Tsang,; X. Zhen,; E. H. T. Teo, Controllable synthesis of highly luminescent boron nitride quantum dots. Small 2015, 11, 6491-6499.
[38]
B. V. R. Chowdari,; Z. Rong, The influence of Bi2O3 on yLi2O·(1-y){xBi2O3(1-x)B2O3} glass system. Solid State Ionics 1996, 86-88, 527-533.
[39]
J. Zhu,; J. Yang,; Z. F. Bian,; H. Ren,; Y. M. Liu,; Y. Cao,; H. X. Li,; H. Y. He,; K. N. Fan, Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol-gel reaction of TiCl4 and benzyl alcohol. Appl. Catal. B Environ. 2007, 76, 82-91.
[40]
X. F. Liu,; S. Ye,; G. P. Dong,; Y. B. Qiao,; J. Ruan,; Y. X. Zhuang,; Q. Zhang,; G. Lin,; D. P. Chen,; J. R. Qiu, Spectroscopic investigation on BCNO-based phosphor: Photoluminescence and long persistent phosphorescence. J. Phys. D Appl. Phys. 2009, 42, 215409.
[41]
Y. H. Chen,; M. T. Zheng,; Y. Xiao,; H. W. Dong,; H. R. Zhang,; J. L. Zhuang,; H. Hu,; B. F. Lei,; Y. L. Liu, A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 2016, 28, 312-318.
[42]
K. Atobe,; M. Honda,; M. Ide,; H. Yamaji,; T. Matsukawa,; N. Fukuoka,; M. Okada,; M. Nakagawa, Point defects in cubic boron nitride after neutron irradiation. Jpn. J. Appl. Phys. 1993, 32, 2102-2104.
[43]
X. H. Zhang,; L. L. Li,; Z. M Lu,; J. Lin,; X. W. Xu,; Y. H. Ma,; X. J. Yang,; F. B. Meng,; J. L. Zhao,; C. C. Tang, Effects of carbon and oxygen impurities on luminescence properties of BCNO phosphor. J. Am. Ceram. Soc. 2014, 97, 246-250.
[44]
Y. Y. Gong,; Y. Q. Tan,; H. Li,; Y. R. Zhang,; W. Z. Yuan,; Y. M. Zhang,; J. Z. Sun,; B. Z. Tang, Crystallization-induced phosphorescence of benzils at room temperature. Sci. China Chem. 2013, 56, 1183-1186.
[45]
N. Zerby,; O. Malka,; S. Bhattacharya,; N. N. Kadamannil,; M. Baranov,; R. Jelinek, Crystallization-induced emissive invisible ink. Adv. Opt. Mater. 2019, 7, 1900232.
[46]
S. J. Zhu,; Y. B. Song,; X. H. Zhao,; J. R. Shao,; J. H. Zhang,; B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355-381.
[47]
Z. K. He,; W. J. Zhao,; J. W. Y. Lam,; Q. Peng,; H. L. Ma,; G. D. Liang,; Z. G. Shuai,; B. Z. Tang, White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 2017, 8, 416.
[48]
Y. S. Yang,; K. Z. Wang,; D. P. Yan, Ultralong Persistent room temperature phosphorescence of metal coordination polymers exhibiting reversible pH-responsive emission. ACS Appl. Mater. Interfaces 2016, 8, 15489-15496.
Nano Research
Pages 3261-3267
Cite this article:
Han S, Lian G, Zeng X, et al. Water-soluble boron carbon oxynitride dots with excellent solid-state fluorescence and ultralong room-temperature phosphorescence. Nano Research, 2020, 13(12): 3261-3267. https://doi.org/10.1007/s12274-020-2999-y
Topics:

903

Views

43

Crossref

N/A

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 25 March 2020
Revised: 17 July 2020
Accepted: 20 July 2020
Published: 22 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return