Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multimodal imaging in the second near-infrared window (NIR-II) guided cancer therapy is a highly precise and efficient cancer theranostic strategy. However, it is still a challenge to develop activated NIR-II optical imaging and therapy agents. In this study, we develop a pH-responsive hybrid plasmonic-fluorescent vesicle by self-assembly of amphiphilic plasmonic nanogapped gold nanorod (AuNNR) and fluorescent down-conversion nanoparticles (DCNP) (AuNNR-DCNP Ve), showing remarkable and activated NIR-II fluorescence (FL)/NIR-II photoacoustic (PA) imaging performances. The hybrid vesicle also exhibited superior loading capacity of doxorubicin as a superior drug carrier and efficient radiosensitizer for X-ray-induced radiotherapy. Interestingly, the accumulated hybrid AuNNR-DCNP Ve in the tumor resulted in a recovery of NIR-II FL imaging signal and a variation in NIR-II PA imaging signal. Dual activated NIR-II PA and FL imaging of the hybrid vesicle could trace drug release and precisely guided cancer radiotherapy to ultimately reduce the side effects to healthy tissue.