AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication and manipulation of nanosized graphene homojunction with atomically-controlled boundaries

Hui Chen1,2,§De-Liang Bao1,2,§Dongfei Wang1,2Yande Que1Wende Xiao1Yu-Yang Zhang1,2Jiatao Sun1,2Shixuan Du1,2( )Hong-Jun Gao1,2( )
Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China
CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China

§Hui Chen and De-Liang Bao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Controlling the atomic configurations of structural defects in graphene nanostructures is crucial for achieving desired functionalities. Here, we report the controlled fabrication of high-quality single-crystal and bicrystal graphene nanoislands (GNI) through a unique top-down etching and post-annealing procedure on a graphite surface. Low-temperature scanning tunneling microscopy (STM) combined with density functional theory calculations reveal that most of grain boundaries (GBs) formed on the bicrystal GNIs are 5-7-5-7 GBs. Two nanodomains separated by a 5-7-5-7 GB are AB stacking and twisted stacking with respect to the underlying graphite substrate and exhibit distinct electronic properties, forming a graphene homojunction. In addition, we construct homojunctions with alternative AB/twisted stacking nanodomains separated by parallel 5-7-5-7 GBs. Remarkably, the stacking orders of homojunctions are manipulated from AB/twist into twist/twist type through a STM tip. The controllable fabrication and manipulation of graphene homojunctions with 5-7-5-7 GBs and distinct stacking orders open an avenue for the construction of GBs-based devices in valleytronics and twistronics.

Electronic Supplementary Material

Download File(s)
12274_2020_3004_MOESM1_ESM.pdf (4.8 MB)

References

[1]
S. Mishra,; D. Beyer,; K. Eimre,; S. Kezilebieke,; R. Berger,; O. Gröning,; C. A. Pignedoli,; K. Müllen,; P. Liljeroth, et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 2020, 15, 81.
[2]
J. D. Cox,; F. J. García de Abajo, Nonlinear interactions between free electrons and nanographenes. Nano Lett. 2020, 20, 4792-4800.
[3]
J. D. Cox,; F. J. G. de Abajo, Single-plasmon thermo-optical switching in graphene. Nano Lett. 2019, 19, 3743-3750.
[4]
J. Su,; M. Telychko,; P. Hu,; G. Macam,; P. Mutombo,; H. J. Zhang,; Y. Bao,; F. Cheng,; Z. Q. Huang,; Z. Z. Qiu, et al. Atomically precise bottom-up synthesis of π-extended [5]triangulene. Sci. Adv. 2019, 5, eaav7717.
[5]
H. Chen,; Y. D. Que,; L. Tao,; Y. Y. Zhang,; X. Lin,; W. D. Xiao,; D. F. Wang,; S. X. Du,; S. T. Pantelides,; H. J. Gao, Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation. Nano Res. 2018, 11, 3722-3729.
[6]
N. Pavliček,; A. Mistry,; Z. Majzik,; N. Moll,; G. Meyer,; D. J. Fox,; L. Gross, Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017, 12, 308-311.
[7]
P. Leicht,; L. Zielke,; S. Bouvron,; R. Moroni,; E. Voloshina,; L. Hammerschmidt,; Y. S. Dedkov,; M. Fonin, In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold. ACS Nano 2014, 8, 3735-3742.
[8]
S. H. Phark,; J. Borme,; A. L. Vanegas,; M. Corbetta,; D. Sander,; J. Kirschner, Direct observation of electron confinement in epitaxial graphene nanoislands. ACS Nano 2011, 5, 8162-8166.
[9]
J. Fernández-Rossier,; J. J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.
[10]
X. F. Feng,; S. Kwon,; J. Y. Park,; M. Salmeron, Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 2013, 7, 1718-1724.
[11]
S. Z. Zhu,; T. Li, Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 2014, 8, 2864-2872.
[12]
H. Chen,; X. L. Zhang,; Y. Y. Zhang,; D. F. Wang,; D. L. Bao,; Y. D. Que,; W. D. Xiao,; S. X. Du,; M. Ouyang,; S. T. Pantelides, et al. Atomically precise, custom-design origami graphene nanostructures. Science 2019, 365, 1036-1040.
[13]
P. M. Wilson,; G. N. Mbah,; T. G. Smith,; D. Schmidt,; R. Y. Lai,; T. Hofmann,; A. Sinitskii, Three-dimensional periodic graphene nanostructures. J. Mater. Chem. C 2014, 2, 1879-1886.
[14]
S. J. Heerema,; C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 2016, 11, 127-136.
[15]
A. K. Majee,; A. Kommini,; Z. Aksamija, Electronic transport and thermopower in 2D and 3D heterostructures—A theory perspective. Ann. Phys. 2019, 531, 1800510.
[16]
O. V. Yazyev,; S. G. Louie, Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806-809.
[17]
D. Gunlycke,; C. T. White, Graphene valley filter using a line defect. Phys. Rev. Lett. 2011, 106, 136806.
[18]
J. H. Chen,; G. Autès,; N. Alem,; F. Gargiulo,; A. Gautam,; M. Linck,; C. Kisielowski,; O. V. Yazyev,; S. G. Louie,; A. Zettl, Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering. Phys. Rev. B 2014, 89, 121407(R).
[19]
J. Xu,; G. W. Yuan,; Q. Zhu,; J. W. Wang,; S. Tang,; L. B. Gao, Enhancing the strength of graphene by a denser grain boundary. ACS Nano 2018, 12, 4529-4535.
[20]
S. S. Alexandre,; A. D. Lúcio,; A. H. C. Neto,; R. W. Nunes, Correlated magnetic states in extended one-dimensional defects in graphene. Nano Lett. 2012, 12, 5097-5102.
[21]
L. Z. Kou,; C. Tang,; W. L. Guo,; C. F. Chen, Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012-1017.
[22]
H. C. Wu,; A. N. Chaika,; M. C. Hsu,; T. W. Huang,; M. Abid,; M. Abid,; V. Y. Aristov,; O. V. Molodtsova,; S. V. Babenkov,; Y. R. Niu, et al. Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. Nat. Commun. 2017, 8, 14453.
[23]
D. Gunlycke,; S. Vasudevan,; C. T. White, Confinement, transport gap, and valley polarization in graphene from two parallel decorated line defects. Nano Lett. 2013, 13, 259-263.
[24]
L. P. Biró,; P. Lambin, Grain boundaries in graphene grown by chemical vapor deposition. New J. Phys. 2013, 15, 035024.
[25]
Y. Tison,; J. Lagoute,; V. Repain,; C. Chacon,; Y. Girard,; F. Joucken,; R. Sporken,; F. Gargiulo,; O. V. Yazyev,; S. Rousset, Grain boundaries in graphene on SiC(0001) substrate. Nano Lett. 2014, 14, 6382-6386.
[26]
B. Yang,; H. Xu,; J. Lu,; K. P. Loh, Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. J. Am. Chem. Soc. 2014, 136, 12041-12046.
[27]
Y. B. Chen,; J. Y. Sun,; J. F. Gao,; F. Du,; Q. Han,; Y. F. Nie,; Z. L. Chen,; A. Bachmatiuk,; M. K. Priydarshi,; D. L. Ma, et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839-7846.
[28]
O. V. Yazyev,; S. G. Louie, Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 2010, 81, 195420.
[29]
M. I. Katsnelson,; K. S. Novoselov,; A. K. Geim, Chiral tunnelling and the klein paradox in graphene. Nat. Phys. 2006, 2, 620-625.
[30]
Y. Cao,; V. Fatemi,; S. A. Fang,; K. Watanabe,; T. Taniguchi,; E. Kaxiras,; P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
[31]
Y. Cao,; V. Fatemi,; A. Demir,; S. A. Fang,; S. L. Tomarken,; J. Y. Luo,; J. D. Sanchez-Yamagishi,; K. Watanabe,; T. Taniguchi,; E. Kaxiras, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80-84.
[32]
A. L. Sharpe,; E. J. Fox,; A. W. Barnard,; J. Finney,; K. Watanabe,; T. Taniguchi,; M. A. Kastner,; D. Goldhaber-Gordon, Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605-608.
[33]
J. H. Lin,; W. J. Fang,; W. Zhou,; A. R. Lupini,; J. C. Idrobo,; J. Kong,; S. J. Pennycook,; S. T. Pantelides, AC/AB stacking boundaries in bilayer graphene. Nano Lett. 2013, 13, 3262-3268.
[34]
C. J. Kim,; A. Sánchez-Castillo,; Z. Ziegler,; Y. Ogawa,; C. Noguez,; J. Park, Chiral atomically thin films. Nat. Nanotechnol. 2016, 11, 520-524.
[35]
S. Hikino,; S. Yunoki, Anomalous enhancement of spin Hall conductivity in a superconductor/normal-metal junction. Phys. Rev. B 2011, 84, 020512(R).
[36]
R. Yang,; L. C. Zhang,; Y. Wang,; Z. W. Shi,; D. X. Shi,; H. J. Gao,; E. G. Wang,; G. Y. Zhang, An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014-4019.
[37]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[38]
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.
[39]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[40]
J. P. Perdew,; A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.
Nano Research
Pages 3286-3291
Cite this article:
Chen H, Bao D-L, Wang D, et al. Fabrication and manipulation of nanosized graphene homojunction with atomically-controlled boundaries. Nano Research, 2020, 13(12): 3286-3291. https://doi.org/10.1007/s12274-020-3004-5
Topics:

904

Views

3

Crossref

N/A

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 24 May 2020
Revised: 13 July 2020
Accepted: 21 July 2020
Published: 04 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return