AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis

Pengkun Wei1Zewei Hao1Yang Yang1Mingyang Liu1,2( )Haijun Zhang3( )Min-Rui Gao4( )Shu-Hong Yu4 ( )
Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA
Center for Aircraft Fire and Emergency, Economics and Management College, Civil Aviation University of China, Tianjin 300300, China
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Although nickel-based catalysts display good catalytic capability and excellent corrosion resistance under alkaline electrolytes for water splitting, it is still imperative to enhance their activity for real device applications. Herein, we decorated Ni0.85Se hollow nanospheres onto reduced graphene oxide (RGO) through a hydrothermal route, then annealed this composite at different temperatures (400 °C, NiSe2-400 and 450 °C, NiSe2-450) under argon atmosphere, yielding a kind of NiSe2/RGO composite catalysts. Positron annihilation spectra revealed two types of vacancies formed in this composite catalyst. We found that the NiSe2-400 catalyst with dual Ni-Se vacancies is able to catalyze the oxygen evolution reaction (OER) efficiently, needing a mere 241 mV overpotential at 10 mA·cm-2. In addition, this catalyst exhibits outstanding stability. Computational studies show favorable energy barrier on NiSe2-400, enabling moderate OH- adsorption and O2 desorption, which leads to the enhanced energetics for OER.

Electronic Supplementary Material

Download File(s)
12274_2020_3005_MOESM1_ESM.pdf (3.1 MB)

References

[1]
P. F. Liu,; S. Yang,; L. R. Zheng,; B. Zhang,; H. G. Yang, Mo6+ activated multimetal oxygen-evolving catalyst. Chem. Sci. 2017, 8, 3484-3488.
[2]
Y. X. Li,; D. F. Yan,; Y. Q. Zou,; C. Xie,; Y. Y. Wang,; Y. Q. Zhang,; S. Y. Wang, Rapidly engineering the electronic properties and morphological structure of NiSe nanowires for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 25494-25500.
[3]
E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/ reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426-1440.
[4]
J. S. Kim,; B. Kim,; H. Kim,; K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.
[5]
J. X. Feng,; S. H. Ye,; H. Xu,; Y. X. Tong,; G. R. Li, Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698-4703.
[6]
B. Hua,; M. Li,; Y. F. Sun,; Y. Q. Zhang,; N. Yan,; J. Chen,; T. Thundat,; J. Li,; J. L. Luo, A coupling for success: Controlled growth of Co/ CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247-254.
[7]
X. H. Gao,; H. X. Zhang,; Q. G. Li,; X. G. Yu,; Z. L. Hong,; X. W. Zhang,; C. D. Liang,; Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290-6294.
[8]
H. S. Ahn,; A. J. Bard, Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2015, 138, 313-318.
[9]
J. F. Ping,; Y. X. Wang,; Q. P. Lu,; B. Chen,; J. Z. Chen,; Y. Huang,; Q. L. Ma,; C. L. Tan,; J. Yang,; X. H. Cao, et al. Self-assembly of single-layer coal-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 2016, 28, 7640-7645.
[10]
Y. Q. Zhang,; B. Ouyang,; J. Xu,; G. C. Jia,; S. Chen,; R. S. Rawat,; H. J. Fan, Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 128, 8812-8816.
[11]
K. J. Lee,; D. Y. Shin,; A. Byeon,; A. Lim,; Y. S. Jo,; A. Begley,; D. H. Lim,; Y. E. Sung,; H. S. Park,; K. H. Chae, et al. Hierarchical cobalt-nitride and -oxide co-doped porous carbon nanostructures for highly efficient and durable bifunctional oxygen reaction electrocatalysts. Nanoscale 2017, 9, 15846-15855.
[12]
H. W. Huang,; C. Yu,; C. T. Zhao,; X. T. Han,; J. Yang,; Z. B. Liu,; S. F. Li,; M. D. Zhang,; J. S. Qiu, Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy 2017, 34, 472-480.
[13]
L. Jiao,; Y. X. Zhou,; H. L. Jiang, Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690-1698.
[14]
Y. Wang,; T. Williams,; T. Gengenbach,; B. Kong,; D. Y. Zhao,; H. T. Wang,; C. Selomulya, Unique hybrid Ni2P/MoO2@MoS2 nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale 2017, 9, 17349-17356.
[15]
F. M. Wang,; Y. C. Li,; T. A. Shifa,; K. L. Liu,; F. Wang,; Z. X. Wang,; P. Xu,; Q. S. Wang,; J. He, Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 6919-6924.
[16]
X. Teng,; J. Y. Wang,; L. L. Ji,; W. Q. Tang,; Z. F. Chen, Hierarchically structured Ni nanotube array-based integrated electrodes for water splitting. ACS Sustainable Chem. Eng. 2018, 6, 2069-2077.
[17]
I. H. Kwak,; H. S. Im,; D. M. Jang,; Y. W. Kim,; K. Park,; Y. R. Lim,; E. H. Cha,; J. Park, CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 5327-5334.
[18]
J. Zhang,; Y. Wang,; C. Zhang,; H. Gao,; L. F. Lv,; L. L. Han,; Z. H. Zhang, Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustainable Chem. Eng. 2018, 6, 2231-2239.
[19]
Y. Jing,; Q. Q. Li,; C. Y. Xu,; C. Na,; Y. Li,; H. G. Liu,; L. Zhen,; V. P. Dravid,; J. S. Wu, NiSe2 pyramids deposited on n-doped graphene encapsulated Ni foam for high-performance water oxidation. J. Mater. Chem. A 2017, 5, 3981-3986.
[20]
X. Li,; G. Q. Han,; Y. R. Liu,; B. Dong,; X. Shang,; W. H. Hu,; Y. M. Chai,; Y. Q. Liu,; C. G. Liu, In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2016, 205, 77-84.
[21]
C. W. Sun,; S. Rajasekhara,; J. B. Goodenough,; F. Zhou, Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132-2135.
[22]
W. J. Jiang,; S. Niu,; T. Tang,; Q. H. Zhang,; X. Z. Liu,; Y. Zhang,; Y. Y. Chen,; J. H. Li,; L. Gu,; L. J. Wan, et al. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem., Int. Ed. 2017, 56, 6572-6577.
[23]
S. Zhu,; J. J. Li,; X. Y. Deng,; C. N. He,; E. Z. Liu,; F. He,; C. S. Shi,; N. Q. Zhao, Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adva. Funct. Mater. 2017, 27, 1605017.
[24]
X. W. Lou,; L. A. Archer,; Z. C. Yang, Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019.
[25]
X. J. Wang,; J. Feng,; Y. C. Bai,; Q. Zhang,; Y. D. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983-11060.
[26]
Y. Liu,; C. Ma,; Q. H. Zhang,; W. Wang,; P. F. Pan,; L. Gu,; D. D. Xu,; J. C. Bao,; Z. H. Dai, 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.
[27]
T. Ling,; D. Y. Yan,; Y. Jiao,; H. Wang,; Y. Zheng,; X. L. Zheng,; J. Mao,; X. W. Du,; Z. P. Hu,; M. Jaroniec, et al. Engineering surface atomic structure of single-crystal cobalt(II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.
[28]
L. Xu,; Q. Q. Jiang,; Z. H. Xiao,; X. Y. Li,; J. Huo,; S. Y. Wang,; L. M. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277-5281.
[29]
Y. W. Liu,; H. Cheng,; M. Lyu,; S. J. Fan,; Q. H. Liu,; W. S. Zhang,; Y. D. Zhi,; C. M. Wang,; C. Xiao,; S. Q. Wei, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670-15675.
[30]
G. Kresse,; J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115-13118.
[31]
G. Kresse,; J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[32]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[33]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[34]
Y. K. Zhang,; W. T. Yang, Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890.
[35]
L. C. Zhang,; M. Q. Wang,; H. Chen,; H. Liu,; Y. Wang,; L. Z. Zhang,; G. R. Hou,; S. J. Bao, Hierarchical growth of vertically standing Fe3O4-FeSe/CoSe2 nano-array for high effective oxygen evolution reaction. Mater. Res. Bull. 2020, 122, 110680.
[36]
M. J. Huang,; W. Xiang,; T. Zhou,; J. Mao,; X. H. Wu,; X. Guo, The critical role of the surface iron-oxalate complexing species in determining photochemical degradation of norfloxacin using different iron oxides. Sci. Total Environ. 2019, 697, 134220.
[37]
B. Xu,; H. Yang,; L. C. Yuan,; Y. Q. Sun,; Z. M. Chen,; C. C. Li, Direct selenylation of mixed Ni/Fe metal-organic frameworks to NiFe-Se/C nanorods for overall water splitting. J. Power Sources 2017, 366, 193-199.
[38]
Z. Gao,; J. Qi,; M. X. Chen,; Z. Wei,; R. Cao, An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochim. Acta 2017, 224, 412-418.
[39]
X. Xu,; F. Song,; X. L. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.
[40]
J. Liang,; Y. C. Yang,; J. Zhang,; J. L. Wu,; P. Dong,; J. T. Yuan,; G. M. Zhang,; J. Lou, Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale 2015, 7, 14813-14816.
[41]
M. Kong,; Y. Z. Li,; X. Chen,; T. T. Tian,; P. F. Fang,; F. Zheng,; X. J. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414-16417.
[42]
J. W. Bai,; Y. Li,; P. K. Wei,; J. D. Liu,; W. Chen,; L. Liu, Enhancement of photocatalytic activity of Bi2O3-BiOI composite nanosheets through vacancy engineering. Small 2019, 15, 1900020.
[43]
C. Tang,; N. Y. Cheng,; Z. H. Pu,; W. Xing,; X. P. Sun, NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.
[44]
M. W. Louie,; A. T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
[45]
X. Zhang,; Y. X. Yang,; S. Q. Guo,; F. Z. Hu,; L. Liu, Mesoporous Ni0.85Se nanospheres grown in situ on graphene with high performance in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 8457-8464.
[46]
H. J. Zhang,; X. T. Li,; X. F. Meng,; S. T. Zhou,; G. Yang,; X. M. Zhou, Isoelectronic analogues of graphene: The BCN monolayers with visible-light absorption and high carrier mobility. J. Phys.: Condens. Matter 2019, 31, 125301.
[47]
Y. Li,; F. M. Li,; X. Y. Meng,; S. N. Li,; J. H. Zeng,; Y. Chen, Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 913-1920.
[48]
Y. X. Liu,; Y. Bai,; Y. Han,; Z. Yu,; S. M. Zhang,; G. H. Wang,; J. H. Wei,; Q. B. Wu,; K. N. Sun, Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 36917-36926.
[49]
Y. S. Du,; G. Z. Cheng,; W. Luo, Colloidal synthesis of urchin-like Fe doped NiSe2 for efficient oxygen evolution. Nanoscale 2017, 9, 6821-6825.
[50]
Z. Y. Wu,; W. B. Ji,; B. C. Hu,; H. W. Liang,; X. X. Xu,; Z. L. Yu,; B. Y. Li,; S. H. Yu, Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 51, 286-293.
[51]
P. S. Li,; M. Y. Wang,; X. X. Duan,; L. R. Zheng,; X. P. Cheng,; Y. F. Zhang,; Y. Kuang,; Y. P. Li,; Q. Ma,; Z. X. Feng, et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.
[52]
T. Ouyang,; Y. Q. Ye,; C. Y. Wu,; K. Xiao,; Z. Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923-4928.
Nano Research
Pages 3292-3298
Cite this article:
Wei P, Hao Z, Yang Y, et al. Unconventional dual-vacancies in nickel diselenide-graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Research, 2020, 13(12): 3292-3298. https://doi.org/10.1007/s12274-020-3005-4
Topics:

949

Views

19

Crossref

N/A

Web of Science

20

Scopus

4

CSCD

Altmetrics

Received: 14 June 2020
Revised: 19 July 2020
Accepted: 22 July 2020
Published: 22 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return