AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures

Enbo Zhu1,2,§Wang Xue3,§Shiyi Wang4,§Xucheng Yan1Jingxuan Zhou1Yang Liu1Jin Cai1Ershuai Liu5Qingying Jia5Xiangfeng Duan3,6Yujing Li2Hendrik Heinz4( )Yu Huang1,6( )
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA

§ Enbo Zhu, Wang Xue, and Shiyi Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Systematic control of grain boundary densities in various platinum (Pt) nanostructures was achieved by specific peptide-assisted assembly and coagulation of nanocrystals. A positive quadratic correlation was observed between the oxygen reduction reaction (ORR) specific activities of the Pt nanostructures and the grain boundary densities on their surfaces. Compared to commercial Pt/C, the grain-boundary-rich strain-free Pt ultrathin nanoplates demonstrated a 15.5 times higher specific activity and a 13.7 times higher mass activity. Simulation studies suggested that the specific activity of ORR was proportional to the resident number and the resident time of oxygen on the catalyst surface, both of which correlate positively with grain boundary density, leading to improved ORR activities.

Electronic Supplementary Material

Download File(s)
12274_2020_3007_MOESM1_ESM.pdf (2.7 MB)

References

[1]
P. Strasser, Catalysts by Platonic design. Science 2015, 349, 379-380.
[2]
M. F. Li,; K. N. Duanmu,; C. Z. Wan,; T. Cheng,; L. Zhang,; S. Dai,; W. X. Chen,; Z. P. Zhao,; P. Li,; H. L. Fei, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495-503.
[3]
N. M. Wilson,; Y. T. Pan,; Y. T. Shao,; J. M. Zuo,; H. Yang,; D. W. Flaherty, Direct synthesis of H2O2 on AgPt octahedra: The importance of Ag-Pt coordination for high H2O2 selectivity. ACS Catal. 2018, 8, 2880-2889.
[4]
C. Z. Li,; T. Y. Liu,; T. He,; B. Ni,; Q. Yuan,; X. Wang, Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale 2018, 10, 4670-4674.
[5]
H. P. Liu,; P. Zhong,; K. Liu,; L. Han,; H. Q. Zheng,; Y. D. Yin,; C. B. Gao, Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity. Chem. Sci. 2018, 9, 398-404
[6]
W. J. Lei,; M. G. Li,; L. He,; X. Meng,; Z. J. Mu,; Y. S. Yu,; F. M. Ross,; W. W. Yang, A general strategy for bimetallic Pt-based Nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638-645.
[7]
L. P. Huang,; W. Zhang,; P. Li,; Y. B. Song,; H. T. Sheng,; Y. X. Du,; Y. G. Wang,; Y. E. Wu,; X. Hong,; Y. H. Ding et al. Exposing Cu-rich {110} active facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Res. 2019, 12, 1147-1153.
[8]
I. E. L. Stephens,; A. S. Bondarenko,; U. Grønbjerg,; J. Rossmeisl,; I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744-6762.
[9]
L. Wang,; A. Holewinski,; C. Wang, Prospects of platinum-based nanostructures for the electrocatalytic reduction of oxygen. ACS Catal. 2018, 8, 9388-9398.
[10]
V. R. Stamenkovic,; B. Fowler,; B. S. Mun,; G. F. Wang,; P. N. Ross,; C. A. Lucas,; N. M. Marković, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-497.
[11]
M. F. Li,; Z. P. Zhao,; T. Cheng,; A. Fortunelli,; C. Y. Chen,; R. Yu,; Q. H. Zhang,; L. Gu,; B. V. Merinov,; Z. Y. Lin, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.
[12]
X. Q. Huang,; Z. P. Zhao,; L. Cao,; Y. Chen,; E. B. Zhu,; Z. Y. Lin,; M. F. Li,; A. M. Yan,; A. Zettl,; Y. M. Wang, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.
[13]
Z. C. Zhang,; Z. M. Luo,; B. Chen,; C. Wei,; J. Zhao,; J. Z. Chen,; X. Zhang,; Z. C. Lai,; Z. X. Fan,; C. L. Tan, et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.
[14]
J. K. Nørskov,; J. Rossmeisl,; A. Logadottir,; L. Lindqvist,; J. R. Kitchin,; T. Bligaard,; H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.
[15]
M. C. Luo,; Z. L. Zhao,; Y. L. Zhang,; Y. J. Sun,; Y. Xing,; F. Lv,; Y. Yang,; X. Zhang,; S. Hwang,; Y. N. Qin, et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81-85.
[16]
N. Tian,; Z. Y. Zhou,; S. G. Sun,; Y. Ding,; Z. L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.
[17]
D. S. He,; D. P. He,; J. Wang,; Y. Lin,; P. Q. Yin,; X. Hong,; Y. E. Wu,; Y. D. Li, Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494-1497.
[18]
L. Ma,; C. M. Wang,; M. Gong,; L. W. Liao,; R. Long,; J. G. Wang,; D. Wu,; W. Zhong,; M. J. Kim,; Y. X. Chen, et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797-9806.
[19]
H. W. Liang,; X. Cao,; F. Zhou,; C. H. Cui,; W. J. Zhang,; S. H. Yu, A Free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467-1471.
[20]
S. Zhou,; M. Zhao,; T. H. Yang,; Y. N. Xia, Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Materialstoday 2019, 22, 108-131.
[21]
H. Cheng,; S. Liu,; Z. K. Hao,; J. Y. Wang,; B. J. Liu,; G. Y. Liu,; X. J. Wu,; W. S. Chu,; C. Z. Wu,; Y. Xie, Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chem. Sci. 2019, 10, 5589-5595.
[22]
T. Zhang,; Y. Bai,; Y. Q. Sun,; L. F. Hang,; X. Y. Li,; D. L. Liu,; X. Lyu,; C. C. Li,; W. P. Cai,; Y. Li, Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J. Mater. Chem. A 2018, 6, 13735-13742.
[23]
D. W. Gao,; S. Li,; Y. P. Lv,; H. Y. Zhuo,; S. Zhao,; L. H. Song,; S. H. Yang,; Y. C. Qin,; C. C. Li,; Q. Wei, et al. PtNi colloidal nanoparticle clusters: Tuning electronic structure and boundary density of nanocrystal subunits for enhanced electrocatalytic properties. J. Catal. 2019, 376, 87-100.
[24]
H. W. Huang,; A. Ruditskiy,; S. I. Choi,; L. Zhang,; J. Y. Liu,; Z. Ye,; Y. N. Xia, One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2017, 9, 31203-31212.
[25]
J. B. Wu,; L. Qi,; H. J. You,; A. Gross,; J. Li,; H. Yang, Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880-11883.
[26]
D. L. Olmsted,; S. M. Foiles,; E. A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009, 57, 3694-3703.
[27]
E. B. Zhu,; X. C. Yan,; S. Y. Wang,; M. J. Xu,; C. Wang,; H. T. Liu,; J. Huang,; W. Xue,; J. Cai,; H. Heinz, et al. Peptide-assisted 2-D assembly toward free-floating ultrathin platinum nanoplates as effective electrocatalysts. Nano Lett. 2019, 19, 3730-3736.
[28]
D. S. Li,; M. H. Nielsen,; J. R. I. Lee,; C. Frandsen,; J. F. Banfield,; J. J. De Yoreo, Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014-1018.
[29]
J. J. Chen,; E. B. Zhu,; J. Liu,; S. Zhang,; Z. Y. Lin,; X. F. Duan,; H. Heinz,; Y. Huang,; J. J. De Yoreo, Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. Science 2018, 362, 1135-1139.
[30]
K. Heo,; H. E. Jin,; H. Kim,; J. H. Lee,; E. Wang,; S. W. Lee, Transient self-templating assembly of M13 bacteriophage for enhanced biopiezoelectric devices. Nano Energy 2019, 56, 716-723.
[31]
P. Y. Chen,; M. N. Hyder,; D. Mackanic,; N. M. D. Courchesne,; J. F. Qi,; M. T. Klug,; A. M. Belcher,; P. T. Hammond, Assembly of viral hydrogels for three-dimensional conducting nanocomposites. Adv. Mater. 2014, 26, 5101-5107.
[32]
E. B. Zhu,; S. Y. Wang,; X. C. Yan,; M. Sobani,; L. Y. Ruan,; C. Wang,; Y. Liu,; X. F. Duan,; H. Heinz,; Y. Huang, Long-range hierarchical nanocrystal assembly driven by molecular structural transformation. J. Am. Chem. Soc. 2019, 141, 1498-1505.
[33]
J. Lee,; M. S. Ju,; O. H. Cho,; Y. Kim,; K. T. Nam, Tyrosine-rich peptides as a platform for assembly and material synthesis. Adv. Sci. 2019, 6, 1801255.
[34]
J. Y. Chang,; H. M. Wu,; H. Chen,; Y. C. Ling,; W. H. Tan, Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 2005, 1092-1094.
[35]
L. Y. Ruan,; E. B. Zhu,; Y. Chen,; Z. Y. Lin,; X. Q. Huang,; X. F. Duan,; Y. Huang, Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. Angew. Chem., Int. Ed. 2013, 52, 12577-12581.
[36]
C. Y. Chiu,; Y. J. Li,; L. Y. Ruan,; X. C. Ye,; C. B. Murray,; Y. Huang, Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393-399.
[37]
Y. J. Li,; Y. Huang, Morphology-controlled synthesis of platinum nanocrystals with specific peptides. Adv. Mater. 2010, 22, 1921-1925.
[38]
L. Y. Ruan,; H. Ramezani-Dakhel,; C. Lee,; Y. J. Li,; X. F. Duan,; H. Heinz,; Y. Huang, A rational biomimetic approach to structure defect generation in colloidal nanocrystals. ACS Nano 2014, 8, 6934-6944.
[39]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.
[40]
H. Heinz,; T. J. Lin,; R. Kishore Mishra,; F. S. Emami, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The interface force field. Langmuir 2013, 29, 1754-1765.
[41]
H. Heinz,; R. A. Vaia,; B. L. Farmer,; R. R. Naik, Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials. J. Phys. Chem. C 2008, 112, 17281-17290.
[42]
V. Stamenković,; T. J. Schmidt,; P. N. Ross,; N. M. Marković, Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970-11979.
[43]
U. A. Paulus,; T. J. Schmidt,; H. A. Gasteiger,; R. J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 2001, 495, 134-145.
[44]
P. P. Lopes,; D. Tripkovic,; P. F. B. D. Martins,; D. Strmcnik,; E. A. Ticianelli,; V. R. Stamenkovic,; N. M. Markovic, Dynamics of electrochemical Pt dissolution at atomic and molecular levels. J. Electroanal. Chem. 2018, 819, 123-129.
Nano Research
Pages 3310-3314
Cite this article:
Zhu E, Xue W, Wang S, et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Research, 2020, 13(12): 3310-3314. https://doi.org/10.1007/s12274-020-3007-2
Topics:

1043

Views

23

Crossref

N/A

Web of Science

22

Scopus

4

CSCD

Altmetrics

Received: 11 July 2020
Revised: 23 July 2020
Accepted: 23 July 2020
Published: 13 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return