AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons

Zuoxian Xiang1,2Chuanxiang Tang2Chao Chang1( )Guozhi Liu2( )
Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

We establish a preliminary model of neural signal generation and transmission based on our previous research, and use this model to study signal transmission on unmyelinated nerves. In our model, the characteristics of neural signals are studied both on a long-time and a short time scale. On the long-time scale, the model is consistent with the circuit model. On the short time scale, the neural system exhibits a THz and infrared electromagnetic oscillation but the energy envelope curve of the rapidly oscillating signal varies slowly. In addition, the numerical method is used to solve the equations of neural signal generation and transmission, and the effects of the temperature on signal transmission are studied. It is found that overly high and overly low temperatures are not conducive to the transmission of neural signals.

Electronic Supplementary Material

Download File(s)
12274_2020_3016_MOESM1_ESM.pdf (1.2 MB)

References

[1]
X. Q. Liao,; W. T. Song,; X. Y. Zhang,; C. Q. Yan,; T. L. Li,; H. L. Ren,; C. Z. Liu,; Y. T. Wang,; Y. J. Zheng, A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 2020, 11, 268.
[2]
R. Feiner,; T. Dvir, Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater. 2018, 3, 17076.
[3]
A. M. Lozano,; N. Lipsman,; H. Bergman,; P. Brown,; S. Chabardes,; J. W. Chang,; K. Matthews,; C. C. McIntyre,; T. E. Schlaepfer,; M. Schulder, et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148-160.
[4]
K. Deisseroth, Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 2015, 18, 1213-1225.
[5]
M. G. Shapiro,; K. Homma,; S. Villarreal,; C. P. Richter,; F. Bezanilla, Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 2012, 3, 736.
[6]
Z. Ghahramani, Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452-459.
[7]
D. Z. Xue,; P. V. Balachandran,; J. Hogden,; J. Theiler,; D. Q. Xue,; T. Lookman, Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 2016, 7, 11241.
[8]
M. Moravčík,; M. Schmid,; N. Burch,; V. Lisý,; D. Morrill,; N. Bard,; T. Davis,; K. Waugh,; M. Johanson,; M. Bowling, DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. Science 2017, 356, 508-513.
[9]
M. Vöröslakos,; Y. Takeuchi,; K. Brinyiczki,; T. Zombori,; A. Oliva,; A. Fernández-Ruiz,; G. Kozák,; Z. T. Kincses,; B. Iványi,; G. Buzsáki, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 2018, 9, 483.
[10]
E. T. Rolls,; M. Loh,; G. Deco,; G. Winterer, Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat. Rev. Neurosci. 2008, 9, 696-709.
[11]
A. L. Hodgkin,; A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500-544.
[12]
A. L. Hodgkin,; A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 1952, 116, 449-472.
[13]
A. L. Hodgkin,; A. F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 1952, 116, 497-506.
[14]
A. L. Hodgkin,; A. F. Huxley,; B. Katz, Measurement of current- voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 1952, 116, 424-448.
[15]
S. Kumar,; K. Boone,; J. Tuszyński,; P. Barclay,; C. Simon, Possible existence of optical communication channels in the brain. Sci. Rep. 2016, 6, 36508.
[16]
S. Hameroff,; R. Penrose, Consciousness in the universe: A review of the ‘Orch OR’ theory. Phys. Life Rev. 2014, 11, 39-78.
[17]
X. Q. Zhang,; L. Jiang, Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 2019, 12, 1219-1221.
[18]
A. Zangari,; D. Micheli,; R. Galeazzi,; A. Tozzi, Node of Ranvier as an array of bio-nanoantennas for infrared communication in nerve tissue. Sci. Rep. 2018, 8, 539.
[19]
G. Z. Liu, The conjectures on physical mechanism of vertebrate nervous system. Chin. Sci. Bull. 2018, 63, 3864-3865.
[20]
Z. X. Xiang,; C. X. Tang,; C. Chang,; G. Z. Liu, A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics. Sci. Bull. 2020, 65, 308-317.
[21]
Y. S. Liu,; K. J. Wu,; C. L. Liu,; G. Q. Cui,; C. Chang,; G. Z. Liu, Amplification of terahertz/infrared field at the nodes of Ranvier for myelinated nerve. Sci. China Phys. Mech. Astron. 2020, 63, 274211.
[22]
G. Z. Liu,; C. Chang,; Z. Qiao,; K. J. Wu,; Z. Zhu,; G. Q. Cui,; W. Y. Peng,; Y. Z. Tang,; J. Li,; C. H. Fan, Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater. 2019, 29, 1807862.
[23]
T. W. Allen,; O. S. Andersen,; B. Roux, Ion permeation through a narrow channel: Using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. Biophys. J. 2006, 90, 3447-3468.
[24]
C. Maffeo,; S. Bhattacharya,; J. Yoo,; D. Wells,; A. Aksimentiev, Modeling and simulation of ion channels. Chem. Rev. 2012, 112, 6250-6284.
[25]
B. Roux, Theoretical and computational models of ion channels. Curr. Opin. Struct. Biol. 2002, 12, 182-189.
[26]
Z. Zhang,; X. Huang,; Y. Qian,; W. Chen,; L. Wen,; L. Jiang, Engineering smart nanofluidic systems for artificial ion channels and ion pumps: From single-pore to multichannel membranes. Adv. Mater. 2020, 32, 1904351.
[27]
Z. P. Zhu,; D. Y. Wang,; Y. Tian,; L. Jiang, Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions. J. Am. Chem. Soc. 2019, 141, 8658-8669.
[28]
K. Xiao,; B. Tu,; L. Chen,; T. Heil,; L. P. Wen,; L. Jiang,; M. Antonietti, Photo-driven ion transport for a photodetector based on an asymmetric carbon nitride nanotube membrane. Angew. Chem., Int. Ed. 2019, 58, 12574-12579.
[29]
D. Y. Lu,; Y. Li,; U. Ravaioli,; K. Schulten, Ion-nanotube terahertz oscillator. Phys. Rev. Lett. 2005, 95, 246801.
[30]
G. E. Weinreb,; I. S. Magura, Physical and molecular basis of ion channel gating: Can electrostatic interactions close the ion channel? Neurophysiology 1998, 30, 325-327.
[31]
Z. Yu,; T. E. McKnight,; M. N. Ericson,; A. V. Melechko,; M. L. Simpson,; B. Morrison, Vertically aligned carbon nanofiber as nano- neuron interface for monitoring neural function. Nanomedicine 2012, 8, 419-423.
[32]
Y. C. Wang,; H. L. Zhu,; H. R. Yang,; A. D. Argall,; L. Luan,; C. Xie,; L. Guo, Nano functional neural interfaces. Nano Res. 2018, 11, 5065-5106.
[33]
Z. Yu,; T. E. McKnight,; M. N. Ericson,; A. V.. Melechko,; M. L. Simpson,; B. Morrison, Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices. Nano Lett. 2007, 7, 2188-2195.
[34]
W. Q. Li,; L. Liao,; X. H. Xiao,; X. Y. Zhao,; Z. G. Dai,; S. S. Guo,; W. Wu,; Y. Shi,; J. X. Xu,; F. Ren, et al. Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Res. 2014, 7, 1691-1698.
[35]
P. Paoletti,; G. C. R. Ellis-Davies,; A. Mourot, Optical control of neuronal ion channels and receptors. Nat. Rev. Neurosci. 2019, 20, 514-532.
[36]
D. Gordon,; S. H. Chung, Permeation and block of the Kv1.2 channel examined using Brownian and molecular dynamics. Biophys. J. 2011, 101, 2671-2678.
[37]
T. Baştuğ,; S. Kuyucak, Comparative study of the energetics of ion permeation in Kv1.2 and KcsA potassium channels. Biophys. J. 2011, 100, 629-636.
[38]
P. Tang,; Y. Xu, Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: The implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. USA 2002, 99, 16035-16040.
[39]
M. G. Saunders,; G. A. Voth, Coarse-graining methods for computational biology. Annu. Rev. Biophys. 2013, 42, 73-93.
[40]
Q. Shi,; S. Izvekov,; G. A. Voth, Mixed atomistic and coarse-grained molecular dynamics: Simulation of a membrane-bound ion channel. J. Phys. Chem. B 2006, 110, 15045-15048.
[41]
J. Summhammer,; V. Salari,; G. Bernroider, A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci. 2012, 11, 123-135.
[42]
Z. Ganim,; A. Tokmakoff,; A. Vaziri, Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New J. Phys. 2011, 13, 113030.
[43]
S. Bhattacharya,; S. Roy, Quantum thermodynamics and coherence in ion channels. In International Conference on Applied Physics, System Science and Computers. Springer: Cham, 2018; pp 3-11.
[44]
S. Roy,; I. Mitra,; R. Llinas, Non-Markovian noise mediated through anomalous diffusion within ion channels. Phys. Rev. E 2008, 78, 041920.
[45]
A. Vaziri,; M. B. Plenio, Quantum coherence in ion channels: Resonances, transport and verification. New J. Phys. 2010, 12, 085001.
[46]
S. Y. Noskov,; W. Im,; B. Roux, Ion permeation through the α-hemolysin channel: Theoretical studies based on Brownian dynamics and Poisson- Nernst-Plank electrodiffusion theory. Biophys. J. 2004, 87, 2299-2309.
[47]
W. Im,; S. Seefeld,; B. Roux, A grand canonical Monte Carlo- Brownian dynamics algorithm for simulating ion channels. Biophys. J. 2000, 79, 788-801.
[48]
V. Salari,; M. Sajadi,; H. Bassereh,; V. Rezania,; M. Alaei,; J. A. Tuszynski, On the classical vibrational coherence of carbonyl groups in the selectivity filter backbone of the KcsA ion channel. J. Integr. Neurosci. 2015, 14, 195-206.
[49]
I. H. Shrivastava,; M. S. P. Sansom, Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 2000, 78, 557-570.
[50]
M. Sajadi,; A. Lohrasebi,; H. Rafii-Tabar, Modelling the effect of a GHz electric field on the dynamics of K+ ions in KcsA potassium channel. Mol. Simul. 2014, 40, 399-407.
[51]
B. Eisenberg, Multiple scales in the simulation of ion channels and proteins. J. Phys. Chem. C 2010, 114, 20719-20733.
[52]
Q. F. Zhong,; Q. Jiang,; P. B. Moore,; D. M. Newns,; M. L. Klein, Molecular dynamics simulation of a synthetic ion channel. Biophys. J. 1998, 74, 3-10.
[53]
J. Breed,; R. Sankararamakrishnan,; I. D. Kerr,; M. S. Sansom, Molecular dynamics simulations of water within models of ion channels. Biophys. J. 1996, 70, 1643-1661.
[54]
P. C. Biggin,; G. R. Smith,; I. Shrivastava,; S. Choe,; M. S. P. Sansom, Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. Biochim. Biophys. Acta 2001, 1510, 1-9.
[55]
J. Horbach,; W. Kob,; K. Binder, Dynamics of sodium in sodium disilicate: Channel relaxation and sodium diffusion. Phys. Rev. Lett. 2002, 88, 125502.
[56]
C. D. Bruce,; S. Senapati,; M. L. Berkowitz,; L. Perera,; M. D. E. Forbes, Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: The behavior of water. J. Phys. Chem. B 2002, 106, 10902-10907.
[57]
C. Kutzner,; H. Grubmüller,; B. L. De Groot,; U. Zachariae, Computational electrophysiology: The molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys. J. 2011, 101, 809-817.
[58]
C. Kutzner,; D. A. Köpfer,; J. P. Machtens,; B. L. de Groot,; C. Song,; U. Zachariae, Insights into the function of ion channels by computational electrophysiology simulations. Biochim. Biophys. Acta 2016, 1858, 1741-1752.
[59]
S. Bernèche,; B. Roux, Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J. 2000, 78, 2900-2917.
[60]
F. Conti,; L. J. De Felice,; E. Wanke, Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol. 1975, 248, 45-82.
[61]
A. Longtin, Stochastic resonance in neuron models. J. Stat. Phys. 1993, 70, 309-327.
[62]
B. J. Gluckman,; T. I. Netoff,; E. J. Neel,; W. L. Ditto,; M. L. Spano,; S. J. Schiff, Stochastic resonance in a neuronal network from mammalian brain. Phys. Rev. Lett. 1996, 77, 4098-4101.
[63]
A. L. Hodgkin, The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 1951, 26, 339-409.
[64]
A. L. Hodgkin,; A. F. Huxley, The components of membrane conductance in the giant axon of Loligo. J. Physiol. 1952, 116, 473-496.
[65]
P. Debye, Reaction rates in ionic solutions. Trans. Electrochem. Soc. 1942, 82, 265-272.
[66]
J. H. Jiang,; D. L. Wu, Ice and water permittivities for millimeter and sub-millimeter remote sensing applications. Atmos. Sci. Lett. 2004, 5, 146-151.
[67]
R. De Col,; K. Messlinger,; R. W. Carr, Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J. Physiol. 2008, 586, 1089-1103.
[68]
R. A. Chapman, Dependence on temperature of the conduction velocity of the action potential of the squid giant axon. Nature 1967, 213, 1143-1144.
[69]
J. J. Rosenthal,; F. Bezanilla, Seasonal variation in conduction velocity of action potentials in squid giant axons. Biol. Bull. 2000, 199, 135-143.
[70]
K. Lowitzsch,; H. C. Hopf,; J. Galland, Changes of sensory conduction velocity and refractory periods with decreasing tissue temperature in man. J. Neurol. 1977, 216, 181-188.
[71]
S. G. Waxman,; M. V. L. Bennett, Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nat. New Biol. 1972, 238, 217-219.
[72]
J. B. Hursh, Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 1939, 127, 131-139.
[73]
J. M. Ritchie, On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc. R. Soc. Lond. B 1982, 217, 29-35.
[74]
C. C. McIntyre,; A. G. Richardson,; W. M. Grill, Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. J. Neurophysiol. 2002, 87, 995-1006.
[75]
G. Dominguez,; H. A. Fozzard, Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circ. Res. 1970, 26, 565-574.
[76]
N. Tsuboi,; I. Kodama,; J. Toyama,; K. Yamada, Anisotropic conduction properties of canine ventricular muscles: Influence of high extracellular K+ concentration and stimulation frequency. Jpn. Circ. J. 1985, 49, 487-498.
[77]
S. G. Waxman, Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 1980, 3, 141-150.
[78]
S. Sivasubramanian; A. Widom; Y. N. Srivastava The Clausius- Mossotti phase transition in polar liquids. Physica A. 2005, 345(3-4), 356-366.
[79]
P. Q. Cai,; W. R. Leow,; X. Y. Wang,; Y. L. Wu,; X. D. Chen, Programmable nano-bio interfaces for functional biointegrated devices. Adv. Mater. 2017, 29, 1605529.
[80]
C. Xie,; L. Hanson,; W. J. Xie,; Z. L. Lin,; B. X. Cui,; Y. Cui, Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 2010, 10, 4020-4024.
[81]
W. Zhu,; C. O’Brien,; J. R. O’Brien,; L. G. Zhang, 3D nano/ microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 2014, 9, 859-875.
[82]
K. Wang,; H. A. Fishman,; H. J. Dai,; J. S. Harris, Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006, 6, 2043-2048.
[83]
K. Eom,; J. Kim,; J. M. Choi,; T. Kang,; J. W. Chang,; K. M. Byun,; S. B. Jun,; S. J. Kim, Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 2014, 10, 3853-3857.
[84]
J. Li,; R. J. Andrews, Trimodal nanoelectrode array for precise deep brain stimulation: Prospects of a new technology based on carbon nanofiber arrays. Acta Neurochir. Suppl. 2007, 97, 537-545.
[85]
B. Song,; Y. S. Shu, Cell vibron polariton resonantly self-confined in the myelin sheath of nerve. Nano Res. 2020, 13, 38-44.
[86]
E. W. Miller,; J. Y. Lin,; E. P. Frady,; P. A. Steinbach,; W. B. Kristan,; R. Y. Tsien, Optically monitoring voltage in neurons by photo- induced electron transfer through molecular wires. Proc. Natl. Acad. Sci. USA 2012, 109, 2114-2119.
[87]
Y. Zou,; Q. Liu,; X. Yang,; H. C. Huang,; J. Li,; L. H. Du,; Z. R. Li,; J. H. Zhao; L. G. Zhu, Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy, Biomed. Opt. Express 2018, 9, 14-24.
Nano Research
Pages 590-600
Cite this article:
Xiang Z, Tang C, Chang C, et al. A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons. Nano Research, 2021, 14(3): 590-600. https://doi.org/10.1007/s12274-020-3016-1
Topics:

908

Views

27

Crossref

18

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 31 May 2020
Revised: 21 July 2020
Accepted: 27 July 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return