Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

Let the light be a guide: Chromophore communication in metal-organic frameworks

Corey R. MartinPreecha KittikhunnathamGabrielle A. LeithAnna A. BersenevaKyoung Chul ParkAndrew B. GreytakNatalia B. Shustova()
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 631 Sumter Street, South Carolina 29208, USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The photonic characteristics of chromophore-containing metal-organic frameworks (MOFs) have led to extensive photophysical studies in an effort to capitalize on the potency of precisely controlled chromophore ensembles. Several examples have laid the foundation that demonstrates how photophysical properties of chromophores can be manipulated by tuning their communications (interactions) through integration within a MOF matrix. The main focus of this review is on harnessing the versatile MOF platform to accentuate the photophysical properties of integrated chromophores. In particular, this review will highlight chromophore dynamics that enhance, alter, or tune the photoluminescence response of single- and multi-chromophore-containing scaffolds, as well as alignment-guided anisotropic fluorescence. Building upon this groundwork, utilization of a hybrid crystalline motif can induce preferential orientation of chromophores resulting in enhanced communication and tailored behavior compared to randomly oriented emissive molecules. Moreover, frameworks that produce upconverted emission via sensitized triplet-triplet annihilation (sTTA), excited-state absorption (ESA), energy transfer upconversion (ETU), multi-photon absorption (MPA), or second-harmonic generation (SHG) can invoke dynamic control of material properties using photochromic linkers and will be discussed herein with a focus on the effects of chromophore alignment. Integration within a framework is a vehicle to fuse chromophores into solid-state platforms, opening an avenue for chromophore utilization in applications such as portable electronics that require solids or thin films. For those reasons, the design of chromophore-containing MOFs with desirable properties that rely on the alignment and communication of hundreds of chromophores within a single platform is a pressing demand for the development of futuristic technologies.

References

[1]
S. Goswami,; C. E. Miller,; J. L. Logsdon,; C. T. Buru,; Y.-L. Wu,; D. N. Bowman,; T. Islamoglu,; A. M. Asiri,; C. J. Cramer,; M. R. Wasielewski, et al. Atomistic approach toward selective photocatalytic oxidation of a mustard-gas simulant: A case study with heavy-chalcogen-containing PCN-57 analogues. ACS Appl. Mater. Interfaces 2017, 9, 19535-19540.
[2]
S. Goswami,; M. Chen,; M. R. Wasielewski,; O. K. Farha,; J. T. Hupp, Boosting transport distances for molecular excitons within photoexcited metal-organic framework films. ACS Appl. Mater. Interfaces 2018, 10, 34409-34417.
[3]
A. M. Champsaur,; J. Yu,; X. Roy,; D. W. Paley,; M. L. Steigerwald,; C. Nuckolls,; C. M. Bejger, Two-dimensional nanosheets from redox-active superatoms. ACS Cent. Sci. 2017, 3, 1050-1055.
[4]
D. C. Mayer,; A. Manzi,; R. Medishetty,; B. Winkler,; C. Schneider,; G. Kieslich,; A. Pöthig,; J. Feldmann,; R. A. Fischer, Controlling multiphoton absorption efficiency by chromophore packing in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 11594-11602.
[5]
X.-Q. Qiao,; Z.-W. Zhang,; Q.-H. Li,; D. F. Hou,; Q. C. Zhang,; J. Zhang,; D.-S. Li,; P. Y. Feng,; X. H. Bu, In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(VI). J. Mater. Chem. A 2018, 6, 22580-22589.
[6]
H. J. Park,; M. C. So,; D. Gosztola,; G. P. Wiederrecht,; J. D. Emery,; A. B. F. Martinson,; S. Er,; C. E. Wilmer,; N. A. Vermeulen,; A. Aspuru-Guzik, et al. Layer-by-layer assembled films of perylene diimide- and squaraine-containing metal-organic framework-like materials: Solar energy capture and directional energy transfer. ACS Appl. Mater. Interfaces 2016, 8, 24983-24988.
[7]
N. D. Rudd,; Y. Y. Liu,; K. Tan,; F. Chen,; Y. J. Chabal,; J. Li, Luminescent metal-organic framework for lithium harvesting applications. ACS Sustain. Chem. Eng. 2019, 7, 6561-6568.
[8]
X. T. Chen,; X. H. Bu,; Q. P. Lin,; C. Y. Mao,; Q.-G. Zhai,; Y. Wang,; P. Y. Feng, Selective ion exchange and photocatalysis by zeolite-like semiconducting chalcogenide. Chem.—Eur. J. 2017, 23, 11913-11919.
[9]
Y. M. Zhang,; S. Yuan,; G. Day,; X. Wang,; X. Y. Yang,; H.-C. Zhou, Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28-45.
[10]
D. M. Marin,; S. Payerpaj,; G. S. Collier,; A. L. Ortiz,; G. Singh,; M. Jones,; M. G. Walter, Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys. Chem. Chem. Phys. 2015, 17, 29090-29096.
[11]
R. Medishetty,; V. Nalla,; L. Nemec,; S. Henke,; D. Mayer,; H. D. Sun,; K. Reuter,; R. A. Fischer, A new class of lasing materials: Intrinsic stimulated emission from nonlinear optically active metal-organic frameworks. Adv. Mater. 2017, 29, 1605637.
[12]
D. G. Nocera, The artificial leaf. Acc. Chem. Res. 2012, 45, 767-776.
[13]
W. P. Lustig,; Z. Q. Shen,; S. J. Teat,; N. Javed,; E. Velasco,; D. M. O’Carroll,; J. Li, Rational design of a high-efficiency, multivariate metal-organic framework phosphor for white LED bulbs. Chem. Sci. 2020, 11, 1814-1824.
[14]
D. Gust,; T. A. Moore,; A. L. Moore, Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890-1898.
[15]
H. Imahori,; Y. Mori,; Y. Matano, Nanostructured artificial photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 51-83.
[16]
J. H. Alstrum-Acevedo,; M. K. Brennaman,; T. J. Meyer, Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 2005, 44, 6802-6827.
[17]
S. Berardi,; S. Drouet,; L. Francàs,; C. Gimbert-Suriñach,; M. Guttentag,; C. Richmond,; T. Stoll,; A. Llobet, Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501-7519.
[18]
Y. Tachibana,; L. Vayssieres,; J. R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511-518.
[19]
M. D. Kärkäs,; O. Verho,; E. V. Johnston,; B. Åkermark, Artificial photosynthesis: Molecular systems for catalytic water oxidation. Chem. Rev. 2014, 114, 11863-12001.
[20]
C. Liu,; B. C. Colón,; M. Ziesack,; P. A. Silver,; D. G. Nocera, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210-1213.
[21]
D. R. Whang,; D. H. Apaydin, Artificial photosynthesis: Learning from nature. ChemPhotoChem 2018, 2, 148-160.
[22]
H.-Q. Xu,; S. Z. Yang,; X. Ma,; J. E. Huang,; H.-L. Jiang, Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615-11621.
[23]
Y. X. Zhou,; W. H. Hu,; S. Z. Yang,; J. E. Huang, Enhanced light harvesting ability in zeolitic imidazolate frameworks through energy transfer from CdS nanowires. Phys. Chem. Chem. Phys. 2020, 22, 3849-3854.
[24]
W. Jiao,; J. X. Zhu,; Y. Ling,; M. L. Deng,; Y. M. Zhou,; P. Y. Feng, Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode. Nanoscale 2018, 10, 20339-20346.
[25]
X. Y. Liu,; F. R. Zhang,; T. W. Goh,; Y. Li,; Y. C. Shao,; L. S. Luo,; W. Y. Huang,; Y. T. Long,; L. Y. Chou,; C. K. Tsung, Using a multi-shelled hollow metal-organic framework as a host to switch the guest-to-host and guest-to-guest interactions. Angew. Chem., Int. Ed. 2018, 57, 2110-2114.
[26]
B. H. Shao,; I. Aprahamian, pH-induced fluorescence and thermal relaxation rate modulation in a hydrazone photoswitch. ChemPhotoChem 2019, 3, 361-364.
[27]
M. A. Gerkman,; R. S. L. Gibson,; J. Calbo,; Y. R. Shi,; M. J. Fuchter,; G. G. D. Han, Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J. Am. Chem. Soc. 2020, 142, 8688-8695.
[28]
Y. M. Zhang,; J. D. Pang,; J. L. Li,; X. Y. Yang,; M. B. Feng,; P. Y. Cai,; H. C. Zhou, Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chem. Sci. 2019, 10, 8455-8460.
[29]
S. A. Baudron, Luminescent metal-organic frameworks based on dipyrromethene metal complexes and BODIPYs. CrystEngComm 2016, 18, 4671-4680.
[30]
A. Khatun,; D. K. Panda,; N. Sayresmith,; M. G. Walter,; S. Saha, Thiazolothiazole-based luminescent metal-organic frameworks with ligand-to-ligand energy transfer and Hg2+-sensing capabilities. Inorg. Chem. 2019, 58, 12707-12715.
[31]
S. F. Tian,; S. D. Chen,; X. T. Ren,; R. H. Cao,; H. Y. Hu,; F. Bai, Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109-3115.
[32]
S. F. Tian,; S. D. Chen,; X. T. Ren,; Y. Q. Hu,; H. Y. Hu,; J. J. Sun,; F. Bai, An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[33]
N. Zhang,; L. Wang,; H. M. Wang,; R. H. Cao,; J. F. Wang,; F. Bai,; H. Y. Fan, Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560-566.
[34]
Y. Q. Liu,; L. Wang,; H. X. Feng,; X. T. Ren,; J. J. Ji,; F. Bai,; H. Y. Fan, Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614-2619.
[35]
Y. Kim,; J. H. Lee,; H. Ha,; S. W. Im,; K. T. Nam, Material science lesson from the biological photosystem. Nano Converg. 2016, 3, 19.
[36]
N. Heidary,; T. G. A. A. Harris,; K. H. Ly,; N. Kornienko, Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): Challenges and prospects in fuel-forming electrocatalysis. Physiol. Plant. 2019, 166, 460-471.
[37]
A. I. Nguyen,; K. M. Van Allsburg,; M. W. Terban,; M. Bajdich,; J. Oktawiec,; J. Amtawong,; M. S. Ziegler,; J. P. Dombrowski,; K. V. Lakshmi,; W. S. Drisdell, et al. Stabilization of reactive Co4O4 cubane oxygen-evolution catalysts within porous frameworks. Proc. Natl. Acad. Sci. USA 2019, 116, 11630-11639.
[38]
G. Paille,; M. Gomez-Mingot,; C. Roch-Marchal,; B. Lassalle-Kaiser,; P. Mialane,; M. Fontecave,; C. Mellot-Draznieks,; A. Dolbecq, A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation. J. Am. Chem. Soc. 2018, 140, 3613-3618.
[39]
Y. C. Luo,; K. L. Chu,; J. Y. Shi,; D. J. Wu,; X. D. Wang,; M. Mayor,; C. Y. Su, Heterogenization of photochemical molecular devices: Embedding a metal-organic cage into a ZIF-8-derived matrix to promote proton and electron transfer. J. Am. Chem. Soc. 2019, 141, 13057-13065.
[40]
S. Q. Zhang,; S. Y. Wang,; L. P. Guo,; H. Chen,; B. E. Tan,; S. B. Jin, An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C 2020, 8, 192-200.
[41]
W. P. Lustig,; F. M. Wang,; S. J. Teat,; Z. C. Hu,; Q. H. Gong,; J. Li, Chromophore-based luminescent metal-organic frameworks as lighting phosphors. Inorg. Chem. 2016, 55, 7250-7256.
[42]
J. Zhu,; W. A. Maza,; A. J. Morris, Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal-organic frameworks: A look toward solar cell applications. J. Photochem. Photobiol. A Chem. 2017, 344, 64-77.
[43]
Q. Wang,; Q. Y. Gao,; A. M. Al-Enizi,; A. Nafady,; S. Q. Ma, Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300-339.
[44]
Y. F. Li,; A. Y. Pang,; C. J. Wang,; M. D. Wei, Metal-organic frameworks: Promising materials for improving the open circuit voltage of dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 17259-17264.
[45]
C. Y. Lee,; O. K. Farha,; B. J. Hong,; A. A. Sarjeant,; S. T. Nguyen,; J. T. Hupp, Light-harvesting metal-organic frameworks (MOFs): Efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 2011, 133, 15858-15861.
[46]
M. C. So,; G. P. Wiederrecht,; J. E. Mondloch,; J. T. Hupp,; O. K. Farha, Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 2015, 51, 3501-3510.
[47]
D. E. Williams,; J. A. Rietman,; J. M. Maier,; R. Tan,; A. B. Greytak,; M. D. Smith,; J. A. Krause,; N. B. Shustova, Energy transfer on demand: Photoswitch-directed behavior of metal-porphyrin frameworks. J. Am. Chem. Soc. 2014, 136, 11886-11889.
[48]
S. Goswami,; L. Ma,; A. B. F. Martinson,; M. R. Wasielewski,; O. K. Farha,; J. T. Hupp, Toward metal-organic framework-based solar cells: Enhancing directional exciton transport by collapsing three-dimensional film structures. ACS Appl. Mater. Interfaces 2016, 8, 30863-30870.
[49]
J. Cho,; J. H. Park,; J. K. Kim,; E. F. Schubert, White light-emitting diodes: History, progress, and future. Laser Photon. Rev. 2017, 11, 1600147.
[50]
D. E. Williams,; N. B. Shustova, Metal-organic frameworks as a versatile tool to study and model energy transfer processes. Chem.—Eur. J. 2015, 21, 15474-15479.
[51]
L. Wilbraham,; F. X. Coudert,; I. Ciofini, Modelling photophysical properties of metal-organic frameworks: A density functional theory based approach. Phys. Chem. Chem. Phys. 2016, 18, 25176-25182.
[52]
L. J. Xu,; G. T. Xu,; Z. N. Chen, Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers. Coord. Chem. Rev. 2014, 273-274, 47-62.
[53]
N. Sikdar,; K. Jayaramulu,; V. Kiran,; K. V. Rao,; S. Sampath,; S. J. George,; T. K. Maji, Redox-active metal-organic frameworks: Highly stable charge-separated states through strut/guest-to-strut electron transfer. Chem.—Eur. J. 2015, 21, 11701-11706.
[54]
E. A. Dolgopolova,; D. E. Williams,; A. B. Greytak,; A. M. Rice,; M. D. Smith,; J. A. Krause,; N. B. Shustova, A bio-inspired approach for chromophore communication: Ligand-to-ligand and host-to-guest energy transfer in hybrid crystalline scaffolds. Angew. Chem., Int. Ed. 2015, 54, 13639-13643.
[55]
H. J. Son,; S. Y. Jin,; S. Patwardhan,; S. J. Wezenberg,; N. C. Jeong,; M. So,; C. E. Wilmer,; A. A. Sarjeant,; G. C. Schatz,; R. Q. Snurr, et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 862-869.
[56]
N. N. Yang,; J. J. Fang,; Q. Sui,; E. Q. Gao, Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks. ACS Appl. Mater. Interfaces 2018, 10, 2735-2744.
[57]
C. L. Jones,; A. J. Tansell,; T. L. Easun, The lighter side of MOFs: Structurally photoresponsive metal-organic frameworks. J. Mater. Chem. A 2016, 4, 6714-6723.
[58]
E. A. Dolgopolova,; A. M. Rice,; C. R. Martin,; N. B. Shustova, Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-4728.
[59]
N. Yanai,; N. Kimizuka, Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies. Chem. Commun. 2016, 52, 5354-5370.
[60]
A. Dhakshinamoorthy,; A. M. Asiri,; H. García, Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414-5445.
[61]
A. M. Rice,; C. R. Martin,; V. A. Galitskiy,; A. A. Berseneva,; G. A. Leith,; N. B. Shustova, Photophysics modulation in photoswitchable metal-organic frameworks. Chem. Rev., in press, .
[62]
N. B. Shustova,; B. D. McCarthy,; M. Dincǎ, Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126-20129.
[63]
D. E. Williams,; E. A. Dolgopolova,; P. J. Pellechia,; A. Palukoshka,; T. J. Wilson,; R. Tan,; J. M. Maier,; A. B. Greytak,; M. D. Smith,; J. A. Krause, et al. Mimic of the green fluorescent protein β-barrel: Photophysics and dynamics of confined chromophores defined by a rigid porous scaffold. J. Am. Chem. Soc. 2015, 137, 2223-2226.
[64]
J. J. Liu,; Y. B Shan,; C. R. Fan,; M. J. Lin,; C. C. Huang,; W. X. Dai, Encapsulating naphthalene in an electron-deficient MOF to enhance fluorescence for organic amines sensing. Inorg. Chem. 2016, 55, 3680-3684.
[65]
D. P. Yan,; Y. Q. Tang,; H. Y. Lin,; D. Wang, Tunable two-color luminescence and host-guest energy transfer of fluorescent chromophores encapsulated in metal-organic frameworks. Sci. Rep. 2015, 4, 4337.
[66]
N. B. Shustova,; A. F. Cozzolino,; S. Reineke,; M. Baldo,; M. Dincǎ, Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc. 2013, 135, 13326-13329.
[67]
J. C. Yu,; Y. J. Cui,; C. D. Wu,; Y. Yang,; Z. Y. Wang,; M. O’Keeffe,; B. L. Chen,; G. D. Qian, Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework. Angew. Chem., Int. Ed. 2012, 51, 10542-10545.
[68]
J. M. Jiao,; J. X. Kang,; Y. N. Ma,; Q. Y. Zhao,; H. Z. Li,; J. Zhang,; X. N. Chen, Aggregation-induced fluorescence of carbazole and o-carborane based organic fluorophore. Front. Chem. 2019, 7, 768.
[69]
P. Li,; M. Y. Guo,; X. M. Yin,; L. L. Gao,; S. L. Yang,; R. Bu,; T. Gong,; E. Q. Gao, Interpenetration-enabled photochromism and fluorescence photomodulation in a metal-organic framework with the thiazolothiazole extended viologen fluorophore. Inorg. Chem. 2019, 58, 14167-14174.
[70]
Y. Takashima,; V. M. Martínez,; S. Furukawa,; M. Kondo,; S. Shimomura,; H. Uehara,; M. Nakahama,; K. Sugimoto,; S. Kitagawa, Molecular decoding using luminescence from an entangled porous framework. Nat. Commun. 2011, 2, 168.
[71]
E. A. Dolgopolova,; T. M. Moore,; W. B. Fellows,; M. D. Smith,; N. B. Shustova, Photophysics of GFP-related chromophores imposed by a scaffold design. Dalt. Trans. 2016, 45, 9884-9891.
[72]
M. Pan,; Y. X. Zhu,; K. Wu,; L. Chen,; Y. J. Hou,; S. Y. Yin,; H. P. Wang,; Y. N. Fan,; C. Y. Su, Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability. Angew. Chem., Int. Ed. 2017, 56, 14582-14586.
[73]
F. Meinardi,; M. Ballabio,; N. Yanai,; N. Kimizuka,; A. Bianchi,; M. Mauri,; R. Simonutti,; A. Ronchi,; M. Campione,; A. Monguzzi, Quasi-thresholdless photon upconversion in metal-organic framework nanocrystals. Nano Lett. 2019, 19, 2169-2177.
[74]
J. Park,; M. Xu,; F. Y. Li,; H. C. Zhou, 3D long-range triplet migration in a water-stable metal-organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 2018, 140, 5493-5499.
[75]
R. Medishetty,; L. Nemec,; V. Nalla,; S. Henke,; M. Samoć,; K. Reuter,; R. A. Fischer, Multi-photon absorption in metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 14743-14748.
[76]
Z. H. Chen,; G. Gallo,; V. A. Sawant,; T. X. Zhang,; M. L. Zhu,; L. L. Liang,; A. Chanthapally,; G. Bolla,; H. S. Quah,; X. G. Liu, et al. Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal-organic frameworks (MOFs). Angew. Chem., Int. Ed. 2020, 59, 833-838.
[77]
M. L. Wang,; C. Fu,; L. Li,; H. Zhang, A 2D photochromic zinc-based metal-organic framework with naphthalene diimide-type chromophore. Inorg. Chem. Commun. 2018, 94, 142-145.
[78]
L. E. Kreno,; K. Leong,; O. K. Farha,; M. Allendorf,; R. P. Van Duyne,; J. T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.
[79]
Q. Peng,; Y. L. Niu,; C. M. Deng,; Z. G. Shuai, Vibration correlation function formalism of radiative and non-radiative rates for complex molecules. Chem. Phys. 2010, 370, 215-222.
[80]
N. B. Shustova,; T. C. Ong,; A. F. Cozzolino,; V. K. Michaelis,; R. G. Griffin,; M. Dincǎ, Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: Implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061-15070.
[81]
C. Yang,; K. Chen,; M. Chen,; X. X. Hu,; S. Y. Huan,; L. L. Chen,; G. S. Song,; X. B. Zhang, Nanoscale metal-organic framework based two-photon sensing platform for bioimaging in live tissue. Anal. Chem. 2019, 91, 2727-2733.
[82]
Z. Y. Wang,; Z. Wang,; B. J. Lin,; X. F. Hu,; Y. F. Wei,; C. K. Zhang,; B. An,; C. Wang,; W. B. Lin, Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Appl. Mater. Interfaces 2017, 9, 35253-35259.
[83]
J. X. Liu,; W. C. Zhou,; J. X. Liu,; Y. Fujimori,; T. Higashino,; H. Imahori,; X. Jiang,; J. J. Zhao,; T. Sakurai,; Y. Hattori, et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency: Promising materials for all-solid-state solar cells. J. Mater. Chem. A 2016, 4, 12739-12747.
[84]
F. M. Wang,; W. Liu,; S. J. Teat,; F. Xu,; H. Wang,; X. L. Wang,; L. T. An,; J. Li, Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. Chem. Commun. 2016, 52, 10249-10252.
[85]
Y. J. Cui,; Y. F. Yue,; G. D. Qian,; B. L. Chen, Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.
[86]
R. Haldar,; A. Mazel,; M. Krstić,; Q. Zhang,; M. Jakoby,; I. A. Howard,; B. S. Richards,; N. Jung,; D. Jacquemin,; S. Diring, et al. A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nat. Commun. 2019, 10, 2048.
[87]
M. Fakis,; D. Anestopoulos,; V. Giannetas,; P. Persephonis, Influence of aggregates and solvent aromaticity on the emission of conjugated polymers. J. Phys. Chem. B 2006, 110, 24897-24902.
[88]
S. R. Amrutha,; M. Jayakannan, Probing the π-stacking induced molecular aggregation in π-conjugated polymers, oligomers, and their blends of p-phenylenevinylenes. J. Phys. Chem. B 2008, 112, 1119-1129.
[89]
X. F. Ma,; R. Sun,; J. H. Cheng,; J. Y. Liu,; F. Gou,; H. F. Xiang,; X. G. Zhou, Fluorescence aggregation-caused quenching versus aggregation-induced emission: A visual teaching technology for undergraduate chemistry students. J. Chem. Educ. 2016, 93, 345-350.
[90]
W. Z. Yuan,; P. Lu,; S. M. Chen,; J. W. Y. Lam,; Z. M. Wang,; Y. Liu,; H. S. Kwok,; Y. G. Ma,; B. Z. Tang, Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159-2163.
[91]
M. N. Huang,; R. N. Yu,; K. Xu,; S. X. Ye,; S. Kuang,; X. H. Zhu,; Y. Q. Wan, An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE). Chem. Sci. 2016, 7, 4485-4491.
[92]
Z. Li,; A. J. Qin, Diverge from the norm. Natl. Sci. Rev. 2014, 1, 22-24.
[93]
Y. J. Huang,; J. Xing,; Q. Y. Gong,; L. C. Chen,; G. F. Liu,; C. J. Yao,; Z. R. Wang,; H. L. Zhang,; Z. Chen,; Q. C. Zhang, Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun. 2019, 10, 169.
[94]
J. Mei,; N. L. C. Leung,; R. T. K. Kwok,; J. W. Y. Lam,; B. Z. Tang, Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
[95]
H. Yamada,; C. H. Xu,; A. Fukazawa,; A. Wakamiya,; S. Yamaguchi, Structural modification of silicon-bridged ladder stilbene oligomers and distyrylbenzenes. Macromol. Chem. Phys. 2009, 210, 904-916.
[96]
C. Wang,; Z. Li, Molecular conformation and packing: Their critical roles in the emission performance of mechanochromic fluorescence materials. Mater. Chem. Front. 2017, 1, 2174-2194.
[97]
M. Yamaguchi,; S. Ito,; A. Hirose,; K. Tanaka,; Y. Chujo, Control of aggregation-induced emission versus fluorescence aggregation-caused quenching by bond existence at a single site in boron pyridinoiminate complexes. Mater. Chem. Front. 2017, 1, 1573-1579.
[98]
J. D. Luo,; Z. L. Xie,; J. W. Y. Lam,; L. Cheng,; H. Y. Chen,; C. F. Qiu,; H. S. Kwok,; X. W. Zhan,; Y. Q. Liu,; B. B. Zhu, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.
[99]
M. Gao,; B. Z. Tang, Fluorescent sensors based on aggregation-induced emission: Recent advances and perspectives. ACS Sens. 2017, 2, 1382-1399.
[100]
Y. N. Hong,; J. W. Y. Lam,; B. Z. Tang, Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.
[101]
Z. Zhao,; H. K. Zhang,; J. W. Y. Lam,; B. Z. Tang, Aggregation-induced emission: New vistas at the aggregate level. Angew. Chem., Int. Ed. 2020, 59, 9888-9907.
[102]
Y. C. Chen,; J. W. Y. Lam,; R. T. K. Kwok,; B. Liu,; B. Z. Tang, Aggregation-induced emission: Fundamental understanding and future developments. Mater. Horiz. 2019, 6, 428-433.
[103]
H. Wang,; E. G. Zhao,; J. W. Y. Lam,; B. Z. Tang, AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365-377.
[104]
D. Ding,; K. Li,; B. Liu,; B. Z. Tang, Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.
[105]
W. Schrimpf,; J. C. Jiang,; Z. Ji,; P. Hirschle,; D. C. Lamb,; O. M. Yaghi,; S. Wuttke, Chemical diversity in a metal-organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 2018, 9, 1647.
[106]
N. Z. Zhang,; D. W. Zhang,; J. Zhao,; Z. G. Xia, Fabrication of a dual-emitting dye-encapsulated metal-organic framework as a stable fluorescent sensor for metal ion detection. Dalt. Trans. 2019, 48, 6794-6799.
[107]
U. Ryu,; J. Yoo,; W. Kwon,; K. M. Choi, Tailoring nanocrystalline metal-organic frameworks as fluorescent dye carriers for bioimaging. Inorg. Chem. 2017, 56, 12859-12865.
[108]
K. Maity,; D. Mukherjee,; M. Sen,; K. Biradha, Fluorescent dye-based metal-organic framework piezochromic and multicolor-emitting two-dimensional materials for light-emitting devices. ACS Appl. Nano Mater. 2019, 2, 1614-1620.
[109]
M. S. Tehrani,; R. Zare-Dorabei, Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68(Al): Central composite design optimization. RSC Adv. 2016, 6, 27416-27425.
[110]
J. Hassanzadeh,; H. A. J. Al Lawati,; I. Al Lawati, Metal-organic framework loaded by rhodamine B as a novel chemiluminescence system for the paper-based analytical devices and its application for total phenolic content determination in food samples. Anal. Chem. 2019, 91, 10631-10639.
[111]
J. M. Rowe,; E. M. Soderstrom,; J. Zhu,; P. M. Usov,; A. J. Morris, Synthesis, characterization, and luminescent properties of two new Zr(IV) metal-organic frameworks based on anthracene derivatives. Can. J. Chem. 2018, 96, 875-880.
[112]
X. H. Wu,; P. Luo,; Z. Wei,; Y. Y. Li,; R. W. Huang,; X. Y. Dong,; K. Li,; S. Q. Zang,; B. Z. Tang, Guest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworks. Adv. Sci. 2019, 6, 1801304.
[113]
Z. W. Wei,; Z. Y. Gu,; R. K. Arvapally,; Y. P. Chen,; R. N. McDougald,; J. F. Ivy,; A. A. Yakovenko,; D. W. Feng,; M. A. Omary,; H. C. Zhou, Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269-8276.
[114]
L. Yu,; H. X. Chen,; J. Yue,; X. F. Chen,; M. T. Sun,; H. Tan,; A. M. Asiri,; K. A. Alamry,; X. K. Wang,; S. H. Wang, Metal-organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection. Anal. Chem. 2019, 91, 5913-5921.
[115]
F. Rouhani,; A. Morsali,; P. Retailleau, Simple one-pot preparation of a rapid response AIE fluorescent metal-organic framework. ACS Appl. Mater. Interfaces 2018, 10, 36259-36266.
[116]
A. N. Wang,; R. Q. Fan,; P. Wang,; R. Fang,; S. Hao,; X. S. Zhou,; X. B. Zheng,; Y. L. Yang, Research on the mechanism of aggregation-induced emission through supramolecular metal-organic frameworks with mechanoluminescent properties and application in press-jet printing. Inorg. Chem. 2017, 56, 12881-12892.
[117]
T. Y. Du,; H. Jiang,; X. M. Wang, The effect of AIE and ACQ on MOFs’ sensing performance. Inorg. Chem. Commun. 2019, 107, 107452.
[118]
M. Zhang,; G. X. Feng,; Z. G. Song,; Y. P. Zhou,; H. Y. Chao,; D. Q. Yuan,; T. T. Y. Tan,; Z. G. Guo,; Z. G. Hu,; B. Z. Tang, et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241-7244.
[119]
S. Choi,; H. E. Lee,; C. H. Ryu,; J. Lee,; J. Lee,; M. Yoon,; Y. Kim,; M. H. Park,; K. M. Lee,; M. Kim, Synthesis of o-carborane-functionalized metal-organic frameworks through ligand exchanges for aggregation-induced emission in the solid state. Chem. Commun. 2019, 55, 11844-11847.
[120]
F. M. Wang,; L. Zhou,; W. P. Lustig,; Z. C. Hu,; J. F. Li,; B. X. Hu,; L. Z. Chen,; J. Li, Highly luminescent metal-organic frameworks based on an aggregation-induced emission ligand as chemical sensors for nitroaromatic compounds. Cryst. Growth Des. 2018, 18, 5166-5173.
[121]
Z. C. Hu,; G. X. Huang,; W. P. Lustig,; F. M. Wang,; H. Wang,; S. J. Teat,; D. Banerjee,; D. Q. Zhang,; J. Li, Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal-organic framework. Chem. Commun. 2015, 51, 3045-3048.
[122]
J. B. Xiong,; X. D. Qian,; L. L. Zhao,; J. L. Xu, A fluorescent responsive tetraphenylethene based metal-organic framework. Inorg. Chem. Commun. 2019, 105, 20-25.
[123]
H. Q. Yin,; X. Y. Wang,; X. B. Yin, Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 15166-15173.
[124]
Y. J. Cai,; L. L. Du,; K. Samedov,; X. G. Gu,; F. Qi,; H. H. Y. Sung,; B. O. Patrick,; Z. P. Yan,; X. F. Jiang,; H. K. Zhang, et al. Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chem. Sci. 2018, 9, 4662-4670.
[125]
S. Baysec,; E. Preis,; S. Allard,; U. Scherf, Very high solid state photoluminescence quantum yields of poly(tetraphenylethylene) derivatives. Macromol. Rapid Commun. 2016, 37, 1802-1806.
[126]
G. Iasilli,; A. Battisti,; F. Tantussi,; F. Fuso,; M. Allegrini,; G. Ruggeri,; A. Pucci, Aggregation-induced emission of tetraphenylethylene in styrene-based polymers. Macromol. Chem. Phys. 2014, 215, 499-506.
[127]
W. Y. Dong,; Z. H. Ma,; P. Chen,; Q. Duan, Carbazole and tetraphenylethylene based AIE-active conjugated polymer for highly sensitive TNT detection. Mater. Lett. 2019, 236, 480-482.
[128]
K. Xu,; B. Yu,; Y. Y. Li,; H. F. Su,; B. N. Wang,; K. Sun,; Y. Y. Liu,; Q. C. Peng,; H. W. Hou,; K. Li, Photo-induced free radical production in a tetraphenylethylene ligand-based metal-organic framework. Chem. Commun. 2018, 54, 12942-12945.
[129]
X. X. Wu,; H. R. Fu,; M. L. Han,; Z. Zhou,; L. F. Ma, Tetraphenylethylene immobilized metal-organic frameworks: Highly sensitive fluorescent sensor for the detection of Cr2O72- and nitroaromatic explosives. Cryst. Growth Des. 2017, 17, 6041-6048.
[130]
L. Ma,; X. Feng,; S. Wang,; B. Wang, Recent advances in AIEgen-based luminescent metal-organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017, 1, 2474-2486.
[131]
X. Y. Liu,; Y. Li,; C. K. Tsung,; J. Li, Encapsulation of yellow phosphors into nanocrystalline metal-organic frameworks for blue-excitable white light emission. Chem. Commun. 2019, 55, 10669-10672.
[132]
G. C. Xing,; Y. X. Feng,; Z. Y. Gao,; M. X. Tao,; H. Q. Wang,; Y. Wei,; M. S. Molokeev,; G. G. Li, A novel red-emitting La2CaHfO6: Mn4+ phosphor based on double perovskite structure for pc-WLEDs lighting. CrystEngComm 2019, 21, 3605-3612.
[133]
Y. B. Fu,; X. Wang,; M. Y. Peng, Tunable photoluminescence from YTaO4: Bi3+ for ultraviolet converted pc-WLED with high chromatic stability. J. Mater. Chem. C 2020, 8, 6079-6085.
[134]
G. G. Li,; Y. Tian,; Y. Zhao,; J. Lin, Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688-8713.
[135]
L. Yu,; H. Wang,; W. Liu,; S. J. Teat,; J. Li, Blue-light-excitable, quantum yield enhanced, yellow-emitting, zirconium-based metal-organic framework phosphors formed by immobilizing organic chromophores. Cryst. Growth Des. 2019, 19, 6850-6854.
[136]
C. Y. Shen,; C. Zhong,; J. Z. Ming, YAG:Ce3+, Gd3+ nano-phosphor for white light emitting diodes. J. Exp. Nanosci. 2013, 8, 54-60.
[137]
Y. Y. Zhao,; H. R. Xu,; X. Y. Zhang,; G. S. Zhu,; D. L. Yan,; A. B. Yu, Facile synthesis of YAG:Ce3+ thick films for phosphor converted white light emitting diodes. J. Eur. Ceram. Soc. 2015, 35, 3761-3764.
[138]
E. A. Dolgopolova,; A. M. Rice,; M. D. Smith,; N. B. Shustova, Photophysics, dynamics, and energy transfer in rigid mimics of GFP-based systems. Inorg. Chem. 2016, 55, 7257-7264.
[139]
A. Follenius-Wund,; M. Bourotte,; M. Schmitt,; F. Iyice,; H. Lami,; J. J. Bourguignon,; J. Haiech,; C. Pigault, Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process. Biophys. J. 2003, 85, 1839-1850.
[140]
E. A. Dolgopolova,; T. M. Moore,; O. A. Ejegbavwo,; P. J. Pellechia,; M. D. Smith,; N. B. Shustova, A metal-organic framework as a flask: Photophysics of confined chromophores with a benzylidene imidazolinone core. Chem. Commun. 2017, 53, 7361-7364.
[141]
S. R. Meech, Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 2009, 38, 2922-2934.
[142]
A. Jancsó,; E. Kovács,; L. Cseri,; B. J. Rózsa,; G. Galbács,; I. G. Csizmadia,; Z. Mucsi, Synthesis and spectroscopic characterization of novel GFP chromophore analogues based on aminoimidazolone derivatives. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2019, 218, 161-170.
[143]
I. Petkova,; G. Dobrikov,; N. Banerji,; G. Duvanel,; R. Perez,; V. Dimitrov,; P. Nikolov,; E. Vauthey, Tuning the excited-state dynamics of GFP-inspired imidazolone derivatives. J. Phys. Chem. A 2010, 114, 10-20.
[144]
S. Gutiérrez,; D. Martínez-López,; M. Morón,; D. Sucunza,; D. Sampedro,; A. Domingo,; A. Salgado,; J. J. Vaquero, Highly fluorescent green fluorescent protein chromophore analogues made by decorating the imidazolone ring. Chem.—Eur. J. 2015, 21, 18758-18763.
[145]
J. Conyard,; I. A. Heisler,; Y. Chan,; P. C. Bulman Page,; S. R. Meech,; L. Blancafort, A new twist in the photophysics of the GFP chromophore: A volume-conserving molecular torsion couple. Chem. Sci. 2018, 9, 1803-1812.
[146]
M. Bourotte,; M. Schmitt,; A. Follenius-Wund,; C. Pigault,; J. Haiech,; J. J. Bourguignon, Fluorophores related to the green fluorescent protein. Tetrahedron Lett. 2004, 45, 6343-6348.
[147]
H. Niwa,; S. Inouye,; T. Hirano,; T. Matsuno,; S. Kojima,; M. Kubota,; M. Ohashi,; F. I. Tsuji, Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl. Acad. Sci. USA 1996, 93, 13617-13622.
[148]
M. B. Nielsen,; L. H. Andersen,; T. Rocha-Rinza, Absorption tuning of the green fluorescent protein chromophore: Synthesis and studies of model compounds. Monatsh. Chem. 2011, 142, 709-715.
[149]
E. A. Dolgopolova,; A. A. Berseneva,; M. S. Faillace,; O. A. Ejegbavwo,; G. A. Leith,; S. W. Choi,; H. N. Gregory,; A. M. Rice,; M. D. Smith,; M. Chruszcz, et al. Confinement-driven photophysics in cages, covalent-organic frameworks, metal-organic frameworks, and DNA. J. Am. Chem. Soc. 2020, 142, 4769-4783.
[150]
F. McCapra,; Z. Razavi,; A. P. Neary, The fluorescence of the chromophore of the green fluorescent protein of Aequorea and Renilla. J. Chem. Soc. Chem. Commun. 1988, 790-791.
[151]
M. M. Wanderley,; C. Wang,; C. D. Wu,; W. B. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 9050-9053.
[152]
W. P. Lustig,; S. J. Teat,; J. Li, Improving LMOF luminescence quantum yield through guest-mediated rigidification. J. Mater. Chem. C 2019, 7, 14739-14744.
[153]
M. Pan,; W. M. Liao,; S. Y. Yin,; S. S. Sun,; C. Y. Su, Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem. Rev. 2018, 118, 8889-8935.
[154]
C. Y. Sun,; X. L. Wang,; X. Zhang,; C. Qin,; P. Li,; Z. M. Su,; D. X. Zhu,; G. G. Shan,; K. Z. Shao,; H. Wu, et al. Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat. Commun. 2013, 4, 2717.
[155]
S. Huh,; S. J. Kim,; Y. Kim, Porphyrinic metal-organic frameworks from custom-designed porphyrins. CrystEngComm 2016, 18, 345-368.
[156]
Y. Q. Hao,; S. Chen,; Y. L. Zhou,; Y. T. Zhang,; M. T. Xu, Recent progress in metal-organic framework (MOF) based luminescent chemodosimeters. Nanomaterials 2019, 9, 974.
[157]
Y. Liu,; H. Y. Dong,; K. Wang,; Z. H. Gao,; C. H. Zhang,; X. L. Liu,; Y. S. Zhao,; F. Q. Hu, Suppressing nonradiative processes of organic dye with metal-organic framework encapsulation toward near-infrared solid-state microlasers. ACS Appl. Mater. Interfaces 2018, 10, 35455-35461.
[158]
Z. Wang,; C. Y. Zhu,; J. T. Mo,; P. Y. Fu,; Y. W. Zhao,; S. Y. Yin,; J. J. Jiang,; M. Pan,; C. Y. Su, White-light emission from dual-way photon energy conversion in a dye-encapsulated metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 9752-9757.
[159]
Y. F. Chen,; B. Yu,; Y. D. Cui,; S. J. Xu,; J. B. Gong, Core-shell structured cyclodextrin metal-organic frameworks with hierarchical dye encapsulation for tunable light emission. Chem. Mater. 2019, 31, 1289-1295.
[160]
H. Nie,; K. Hu,; Y. J. Cai,; Q. Peng,; Z. J. Zhao,; R. R. Hu,; J. W. Chen,; S. J. Su,; A. J. Qin,; B. Z. Tang, Tetraphenylfuran: Aggregation-induced emission or aggregation-caused quenching? Mater. Chem. Front. 2017, 1, 1125-1129.
[161]
X. Y. Liu,; K. Xing,; Y. Li,; C. K. Tsung,; J. Li, Three models to encapsulate multicomponent dyes into nanocrystal pores: A new strategy for generating high-quality white light. J. Am. Chem. Soc. 2019, 141, 14807-14813.
[162]
G. F. Ji,; J. Z. Wang,; X. C. Gao,; J. J. Liu,; W. H. Guan,; H. T. Liu,; Z. L. Liu, Hypersensitive self-referencing detection traces of water in ethyl alcohol by dual-emission lanthanide metal-organic frameworks. Eur. J. Inorg. Chem. 2018, 2018, 1998-2003.
[163]
X. L. Hu,; C. Qin,; X. L. Wang,; K. Z. Shao,; Z. M. Su, A luminescent dye@MOF as a dual-emitting platform for sensing explosives. Chem. Commun. 2015, 51, 17521-17524.
[164]
T. F. Xia,; Y. J. Cui,; Y. Yang,; G. D. Qian, Highly stable mixed-lanthanide metal-organic frameworks for self-referencing and colorimetric luminescent pH sensing. ChemNanoMat 2017, 3, 51-57.
[165]
D. M. Jameson,; J. A. Ross, Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 2010, 110, 2685-2708.
[166]
A. Gijsbers,; T. Nishigaki,; N. Sánchez-Puig, Fluorescence anisotropy as a tool to study protein-protein interactions. J. Vis. Exp. 2016, 54640.
[167]
K. N. Swonger,; A. S. Robinson, Using fluorescence anisotropy for ligand binding kinetics of membrane proteins. Curr. Protoc. Protein Sci. 2018, 93, e63.
[168]
A. H. A. Clayton,; Q. S. Hanley,; D. J. Arndt-Jovin,; V. Subramaniam,; T. M. Jovin, Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 2002, 83, 1631-1649.
[169]
C. Vinegoni,; J. M. Dubach,; P. F. Feruglio,; R. Weissleder, Two-photon fluorescence anisotropy microscopy for imaging and direct measurement of intracellular drug target engagement. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6801607.
[170]
J. Chen,; J. W. Liu,; X. G. Chen,; H. D. Qiu, Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors. Chin. Chem. Lett. 2019, 30, 1575-1580.
[171]
A. J. Bur,; S. C. Roth,; C. L. Thomas, Fluorescence anisotropy sensor and its application to polymer processing and characterization. Rev. Sci. Instrum. 2000, 71, 1516-1523.
[172]
H. Wang,; S. I. Vagin,; S. Lane,; W. Lin,; V. Shyta,; W. R. Heinz,; C. van Dyck,; A. J. Bergren,; K. Gardner,; B. Rieger, et al. Metal-organic framework with color-switching and strongly polarized emission. Chem. Mater. 2019, 31, 5816-5823.
[173]
H. J. He,; E. Ma,; Y. J. Cui,; J. C. Yu,; Y. Yang,; T. Song,; C. D. Wu,; X. Y. Chen,; B. L. Chen,; G. D. Qian, Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 2016, 7, 11087.
[174]
J. F. Guo,; C. M. Li,; X. L. Hu,; C. Z. Huang,; Y. F. Li, Metal-organic framework MIL-101 enhanced fluorescence anisotropy for sensitive detection of DNA. RSC Adv. 2014, 4, 9379-9382.
[175]
D. P. Yan,; R. Gao,; M. Wei,; S. D. Li,; J. Lu,; D. G. Evans,; X. Duan, Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: An experimental and computational study. J. Mater. Chem. C 2013, 1, 997-1004.
[176]
C. X. Chen,; Z. W. Wei,; Y. N. Fan,; P. Y. Su,; Y. Y. Ai,; Q. F. Qiu,; K. Wu,; S. Y. Yin,; M. Pan,; C. Y. Su, Visualization of anisotropic and stepwise piezofluorochromism in an MOF single crystal. Chem 2018, 4, 2658-2669.
[177]
D. P. Yan,; G. O. Lloyd,; A. Delori,; W. Jones,; X. Duan, Tuning fluorescent molecules by inclusion in a metal-organic framework: An experimental and computational study. ChemPlusChem 2012, 77, 1112-1118.
[178]
J. C. Yu,; Y. J. Cui,; H. Xu,; Y. Yang,; Z. Y. Wang,; B. L. Chen,; G. D. Qian, Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 2013, 4, 2719.
[179]
S. H. Wen,; J. J. Zhou,; P. J. Schuck,; Y. D. Suh,; T. W. Schmidt,; D. Y. Jin, Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828-838.
[180]
J. Zhou,; Z. Liu,; F. Y. Li, Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.
[181]
J. C. Yu,; Y. J. Cui,; C. D. Wu,; Y. Yang,; B. L. Chen,; G. D. Qian, Two-photon responsive metal-organic framework. J. Am. Chem. Soc. 2015, 137, 4026-4029.
[182]
J. Zhou,; Q. Liu,; W. Feng,; Y. Sun,; F. Y. Li, Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395-465.
[183]
Q. C. Sun,; Y. C. Ding,; D. M. Sagar,; P. Nagpal, Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 2017, 92, 281-316.
[184]
Z. Y. Hou,; K. R. Deng,; C. X. Li,; X. R. Deng,; H. Z. Lian,; Z. Y. Cheng,; D. Y. Jin,; J. Lin, 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 2016, 101, 32-46.
[185]
R. R. Deng,; F. Qin,; R. F. Chen,; W. Huang,; M. H. Hong,; X. G. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237-242.
[186]
A. Monguzzi,; R. Tubino,; F. Meinardi, Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer. Phys. Rev. B 2008, 77, 155122.
[187]
A. Monguzzi,; R. Tubino,; S. Hoseinkhani,; M. Campione,; F. Meinardi, Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives. Phys. Chem. Chem. Phys. 2012, 14, 4322-4332.
[188]
T. N. Singh-Rachford,; J. Lott,; C. Weder,; F. N. Castellano, Influence of temperature on low-power upconversion in rubbery polymer blends. J. Am. Chem. Soc. 2009, 131, 12007-12014.
[189]
R. R. Islangulov,; J. Lott,; C. Weder,; F. N. Castellano, Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 2007, 129, 12652-12653.
[190]
J. H. Kim,; F. Deng,; F. N. Castellano,; J. H. Kim, High efficiency low-power upconverting soft materials. Chem. Mater. 2012, 24, 2250-2252.
[191]
A. Monguzzi,; F. Bianchi,; A. Bianchi,; M. Mauri,; R. Simonutti,; R. Ruffo,; R. Tubino,; F. Meinardi, High efficiency up-converting single phase elastomers for photon managing applications. Adv. Energy Mater. 2013, 3, 680-686.
[192]
R. Galli,; O. Uckermann,; E. F. Andresen,; K. D. Geiger,; E. Koch,; G. Schackert,; G. Steiner,; M. Kirsch, Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PLoS One 2014, 9, e110295.
[193]
G. J. Wilmink,; S. R. Opalenik,; J. T. Beckham,; J. M. Davidson,; E. D. Jansen, Assessing laser-tissue damage with bioluminescent imaging. J. Biomed. Opt. 2006, 11, 041114.
[194]
J. X. Lin,; X. Q. Hu,; P. Zhang,; A. Van Rynbach,; D. N. Beratan,; C. A. Kent,; B. P. Mehl,; J. M. Papanikolas,; T. J. Meyer,; W. B. Lin, et al. Triplet excitation energy dynamics in metal-organic frameworks. J. Phys. Chem. C. 2013, 117, 22250-22259.
[195]
C. Wu,; P. I. Djurovich,; M. E. Thompson, Study of energy transfer and triplet exciton diffusion in hole-transporting host materials. Adv. Funct. Mater. 2009, 19, 3157-3164.
[196]
X. Li,; M. Lee Tang, Triplet transport in thin films: Fundamentals and applications. Chem. Commun. 2017, 53, 4429-4440.
[197]
K. Narushima,; Y. Kiyota,; T. Mori,; S. Hirata,; M. Vacha, Suppressed triplet exciton diffusion due to small orbital overlap as a key design factor for ultralong-lived room-temperature phosphorescence in molecular crystals. Adv. Mater. 2019, 31, 1807268.
[198]
J. M. Rowe,; J. Zhu,; E. M. Soderstrom,; W. Q. Xu,; A. Yakovenko,; A. J. Morris, Sensitized photon upconversion in anthracene-based zirconium metal-organic frameworks. Chem. Commun. 2018, 54, 7798-7801.
[199]
M. Adams,; M. Kozlowska,; N. Baroni,; M. Oldenburg,; R. Ma,; D. Busko,; A. Turshatov,; G. Emandi,; M. O. Senge,; R. Haldar, et al. Highly efficient one-dimensional triplet exciton transport in a palladium-porphyrin-based surface-anchored metal-organic framework. ACS Appl. Mater. Interfaces. 2019, 11, 15688-15697.
[200]
A. Nandi,; B. Manna,; R. Ghosh, Interplay of exciton-excimer dynamics in 9,10-diphenylanthracene nanoaggregates and thin films revealed by time-resolved spectroscopic studies. Phys. Chem. Chem. Phys. 2019, 21, 11193-11202.
[201]
S. Yuan,; W. G. Lu,; Y. P. Chen,; Q. Zhang,; T. F. Liu,; D. W. Feng,; X. Wang,; J. S. Qin,; H. C. Zhou, Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 3177-3180.
[202]
O. A. Ejegbavwo,; C. R. Martin,; O. A. Olorunfemi,; G. A. Leith,; R. T. Ly,; A. M. Rice,; E. A. Dolgopolova,; M. D. Smith,; S. G. Karakalos,; N. Birkner, et al. Thermodynamics and electronic properties of heterometallic multinuclear actinide-containing metal-organic frameworks with “structural memory”. J. Am. Chem. Soc. 2019, 141, 11628-11640.
[203]
M. Oldenburg,; A. Turshatov,; D. Busko,; S. Wollgarten,; M. Adams,; N. Baroni,; A. Welle,; E. Redel,; C. Wöll,; B. S. Richards, et al. Photon upconversion at crystalline organic-organic heterojunctions. Adv. Mater. 2016, 28, 8477-8482.
[204]
S. Ahmad,; J. X. Liu,; C. H. Gong,; J. Z. Zhao,; L. C. Sun, Photon up-conversion via epitaxial surface-supported metal-organic framework thin films with enhanced photocurrent. ACS Appl. Energy Mater. 2018, 1, 249-253.
[205]
S. Ahmad,; J. X. Liu,; W. Ji,; L. C. Sun, Metal-organic framework thin film-based dye sensitized solar cells with enhanced photocurrent. Materials 2018, 11, 1868.
[206]
M. X. Li,; S. Gul,; D. Tian,; E. L. Zhou,; Y. B. Wang,; Y. D. Han,; L. S. Yin,; L. Huang, Erbium(III)-based metal-organic frameworks with tunable upconversion emissions. Dalton Trans. 2018, 47, 12868-12872.
[207]
H. Dong,; L. D. Sun,; C. H. Yan, Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608-1634.
[208]
D. F. Weng,; X. J. Zheng,; L. P. Jin, Assembly and upconversion properties of lanthanide coordination polymers based on hexanuclear building blocks with (μ3-OH) bridges. Eur. J. Inorg. Chem. 2006, 2006, 4184-4190.
[209]
D. F. Weng,; X. J. Zheng,; X. B. Chen,; L. C. Li,; L. P. Jin, Synthesis, upconversion luminescence and magnetic properties of new lanthanide-organic frameworks with (43)2(46, 66, 83) topology. Eur. J. Inorg. Chem. 2007, 2007, 3410-3415.
[210]
C. Y. Sun,; X. J. Zheng,; X. B. Chen,; L. C. Li,; L. P. Jin, Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands. Inorg. Chim. Acta 2009, 362, 325-330.
[211]
X. D. Zhang,; B. Li,; H. P. Ma,; L. M. Zhang,; H. F. Zhao, Metal-organic frameworks modulated by doping Er3+ for up-conversion luminescence. ACS Appl. Mater. Interfaces 2016, 8, 17389-17394.
[212]
E. A. Dolgopolova,; A. J. Brandt,; O. A. Ejegbavwo,; A. S. Duke,; T. D. Maddumapatabandi,; R. P. Galhenage,; B. W. Larson,; O. G. Reid,; S. C. Ammal,; A. Heyden, et al. Electronic properties of bimetallic metal-organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 2017, 139, 5201-5209.
[213]
G. S. He,; L. S. Tan,; Q. D. Zheng,; P. N. Prasad, Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245-1330.
[214]
R. Medishetty,; J. K. Zaręba,; D. Mayer,; M. Samoć,; R. A. Fischer, Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4976-5004.
[215]
V. Nathan,; A. H. Guenther,; S. S. Mitra, Review of multiphoton absorption in crystalline solids. J. Opt. Soc. Am. B 1985, 2, 294-316.
[216]
J. D. Bhawalkar,; G. S. He,; P. N. Prasad, Nonlinear multiphoton processes in organic and polymeric materials. Rep. Prog. Phys. 1996, 59, 1041-1070.
[217]
H. S. Quah,; W. Q. Chen,; M. K. Schreyer,; H. Yang,; M. W. Wong,; W. Ji,; J. J. Vittal, Multiphoton harvesting metal-organic frameworks. Nat. Commun. 2015, 6, 7954.
[218]
H. S. Quah,; V. Nalla,; K. Z. Zheng,; C. A. Lee,; X. G. Liu,; J. J. Vittal, Tuning two-photon absorption cross section in metal organic frameworks. Chem. Mater. 2017, 29, 7424-7430.
[219]
M. Gupta,; D. Kottilil,; K. Tomar,; S. B. Lu,; C. Vijayan,; W. Ji,; P. K. Bharadwaj, Two-photon absorption and fluorescence in micrometer-sized single crystals of a rhodamine B coordinated metal-organic framework. ACS Appl. Nano Mater. 2018, 1, 5408-5413.
[220]
C. Xu,; W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 1996, 13, 481-491.
[221]
Y. X. Zhang,; B. X. Li,; H. Lin,; Z. J. Ma,; X. T. Wu,; Q. L. Zhu, Impressive second harmonic generation response in a novel phase-matchable NLO-active MOF derived from achiral precursors. J. Mater. Chem. C 2019, 7, 6217-6221.
[222]
X. L. Huang,; Q. Y. Li,; X. Xiao,; S. P. Jia,; Y. Li,; Z. G. Duan,; L. Bai,; Z. Yuan,; L. Li,; Z. H. Lin, et al. Nonlinear-optical behaviors of a chiral metal-organic framework comprised of an unusual multioriented double-helix structure. Inorg. Chem. 2018, 57, 6210-6213.
[223]
T. Song,; J. C. Yu,; Y. J. Cui,; Y. Yang,; G. D. Qian, Encapsulation of dyes in metal-organic frameworks and their tunable nonlinear optical properties. Dalton Trans. 2016, 45, 4218-4223.
[224]
J. S. Guo,; G. Xu,; X. M. Jiang,; M. J. Zhang,; B. W. Liu,; G. C. Guo, A highly stable 3D acentric zinc metal-organic framework based on two symmetrical flexible ligands: High second-harmonic-generation efficiency and tunable photoluminescence. Inorg. Chem. 2014, 53, 4278-4280.
[225]
H. Yang,; R. L. Sang,; X. Xu,; L. Xu, An unprecedented 3-D SHG MOF material of silver(I) induced by chiral triple helices. Chem. Commun. 2013, 49, 2909-2911.
[226]
S. S. Prasad,; M. R. Sudarsanakumar,; V. S. Dhanya,; S. Suma,; M. R. P. Kurup, Synthesis and characterization of a prominent NLO active MOF of lead with 1,5-naphthalenedisulfonic acid. J. Mol. Struct. 2018, 1167, 134-141.
[227]
B. Garai,; A. Mallick,; R. Banerjee, Photochromic metal-organic frameworks for inkless and erasable printing. Chem. Sci. 2016, 7, 2195-2200.
[228]
S. Kawata,; Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 2000, 100, 1777-1788.
[229]
M. Qin,; Y. Huang,; F. Y. Li,; Y. L. Song, Photochromic sensors: A versatile approach for recognition and discrimination. J. Mater. Chem. C 2015, 3, 9265-9275.
[230]
M. Irie,; T. Fukaminato,; K. Matsuda,; S. Kobatake, Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev. 2014, 114, 12174-12277.
[231]
H. A. Schwartz,; U. Ruschewitz,; L. Heinke, Smart nanoporous metal-organic frameworks by embedding photochromic molecules-state of the art and future perspectives. Photochem. Photobiol. Sci. 2018, 17, 864-873.
[232]
D. E. Williams,; C. R. Martin,; E. A. Dolgopolova,; A. Swifton,; D. C. Godfrey,; O. A. Ejegbavwo,; P. J. Pellechia,; M. D. Smith,; N. B. Shustova, Flipping the switch: Fast photoisomerization in a confined environment. J. Am. Chem. Soc. 2018, 140, 7611-7622.
[233]
E. A. Dolgopolova,; V. A. Galitskiy,; C. R. Martin,; H. N. Gregory,; B. J. Yarbrough,; A. M. Rice,; A. A. Berseneva,; O. A. Ejegbavwo,; K. S. Stephenson,; P. Kittikhunnatham, et al. Connecting wires: Photoinduced electronic structure modulation in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 5350-5358.
Nano Research
Pages 338-354
Cite this article:
Martin CR, Kittikhunnatham P, Leith GA, et al. Let the light be a guide: Chromophore communication in metal-organic frameworks. Nano Research, 2021, 14(2): 338-354. https://doi.org/10.1007/s12274-020-3017-0
Topics:
Metrics & Citations  
Article History
Copyright
Return