AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-dimensional MX Dirac materials and quantum spin Hall insulators with tunable electronic and topological properties

Yan-Fang Zhang1,2,§Jinbo Pan2,,§Huta Banjade2Jie Yu2Hsin Lin3Arun Bansil4Shixuan Du1( )Qimin Yan2( )
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Department of Physics, Temple University, Philadelphia, PA 19122, USA
Institute of Physics, "Academia Sinica", Taipei 11529, Taiwan, China
Physics Department, Northeastern University, Boston, MA 02115, USA

§ Yan-Fang Zhang and Jinbo Pan contributed equally to this work.

Present address: Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China

Show Author Information

Graphical Abstract

Abstract

We propose a novel class of two-dimensional (2D) Dirac materials in the MX family (M = Be, Mg, Zn and Cd, X = Cl, Br and I), which exhibit graphene-like band structures with linearly-dispersing Dirac-cone states over large energy scales (0.8-1.8 eV) and ultra-high Fermi velocities comparable to graphene. Spin-orbit coupling opens sizable topological band gaps so that these compounds can be effectively classified as quantum spin Hall insulators. The electronic and topological properties are found to be highly tunable and amenable to modulation via anion-layer substitution and vertical electric field. Electronic structures of several members of the family are shown to host a Van-Hove singularity (VHS) close to the energy of the Dirac node. The enhanced density-of-states associated with these VHSs could provide a mechanism for inducing topological superconductivity. The presence of sizable band gaps, ultra-high carrier mobilities, and small effective masses makes the MX family promising for electronics and spintronics applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3022_MOESM1_ESM.pdf (2.8 MB)

References

[1]
J. Y. Wang,; S. B. Deng,; Z. F. Liu,; Z. R. Liu, The rare two- dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2, 22-39.
[2]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[3]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; M. I. Katsnelson,; I. V. Grigorieva,; S. V. Dubonos,; A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
[4]
Y. B. Zhang,; Y. W. Tan,; H. L. Stormer,; P. Kim, Experimental observation of the quantum hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204.
[5]
K. I. Bolotin,; F. Ghahari,; M. D. Shulman,; H. L. Stormer,; P. Kim, Observation of the fractional quantum hall effect in graphene. Nature 2009, 462, 196-199.
[6]
X. Du,; I. Skachko,; F. Duerr,; A. Luican,; E. Y. Andrei, Fractional quantum hall effect and insulating phase of Dirac electrons in graphene. Nature 2009, 462, 192-195.
[7]
C. R. Dean,; L. Wang,; P. Maher,; C. Forsythe,; F. Ghahari,; Y. Gao,; J. Katoch,; M. Ishigami,; P. Moon,; M. Koshino, et al. Hofstadter's butterfly and the fractal quantum hall effect in moire superlattices. Nature 2013, 497, 598-602.
[8]
L. A. Ponomarenko,; R. V. Gorbachev,; G. L. Yu,; D. C. Elias,; R. Jalil,; A. A. Patel,; A. Mishchenko,; A. S. Mayorov,; C. R. Woods,; J. R. Wallbank, et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594-597.
[9]
B. Hunt,; J. D. Sanchez-Yamagishi,; A. F. Young,; M. Yankowitz,; B. J. LeRoy,; K. Watanabe,; T. Taniguchi,; P. Moon,; M. Koshino,; P. Jarillo-Herrero, et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427-1430.
[10]
C. C. Liu,; W. X. Feng,; Y. G. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.
[11]
A. H. Castro Neto,; F. Guinea,; N. M. R. Peres,; K. S. Novoselov,; A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
[12]
N. O. Weiss,; H. L. Zhou,; L. Liao,; Y. Liu,; S. Jiang,; Y. Huang,; X. F. Duan, Graphene: An emerging electronic material. Adv. Mater. 2012, 24, 5782-5825.
[13]
M. Ashton,; J. Paul,; S. B. Sinnott,; R. G. Hennig, Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 2017, 118, 106101.
[14]
N. Mounet,; M. Gibertini,; P. Schwaller,; D. Campi,; A. Merkys,; A. Marrazzo,; T. Sohier,; I. E. Castelli,; A. Cepellotti,; G. Pizzi, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246-252.
[15]
G. Cheon,; K. A. N. Duerloo,; A. D. Sendek,; C. Porter,; Y. Chen,; E. J. Reed, Data mining for new two-and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 2017, 17, 1915-1923.
[16]
K. Choudhary,; I. Kalish,; R. Beams,; F. Tavazza, High-throughput identification and characterization of two-dimensional materials using density functional theory. Sci. Rep. 2017, 7, 5179.
[17]
S. Haastrup,; M. Strange,; M. Pandey,; T. Deilmann,; P. S. Schmidt,; N. F. Hinsche,; M. N. Gjerding,; D. Torelli,; P. M. Larsen,; A. C. Riis-Jensen, The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002.
[18]
P. R. Wallace, The band theory of graphite. Phys. Rev. 1947, 71, 622-634.
[19]
S. Cahangirov,; M. Topsakal,; E. Akturk,; H. Şahin,; S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.
[20]
D. Malko,; C. Neiss,; F. Viñes,; A. Görling, Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.
[21]
H. Q. Huang,; W. H. Duan,; Z. R. Liu, The existence/absence of Dirac cones in graphynes. New J. Phys. 2013, 15, 023004.
[22]
K. K. Gomes,; W. Mar,; W. Ko,; F. Guinea,; H. C. Manoharan, Designer Dirac fermions and topological phases in molecular graphene. Nature 2012, 483, 306-310.
[23]
P. Vogt,; P. De Padova,; C. Quaresima,; J. Avila,; E. Frantzeskakis,; M. C. Asensio,; A. Resta,; B. Ealet,; G. Le Lay, Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.
[24]
Y. P. Wang,; H. P. Cheng, Absence of a Dirac cone in silicene on Ag(111): First-principles density functional calculations with a modified effective band structure technique. Phys. Rev. B 2013, 87, 245430.
[25]
L. Zhang,; P. Bampoulis,; A. N. Rudenko,; Q. Yao,; A. van Houselt,; B. Poelsema,; M. I. Katsnelson,; H. J. W. Zandvliet, Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.
[26]
A. L. Ivanovskii, Graphynes and graphdyines. Prog. Solid State Chem. 2013, 41, 1-19.
[27]
Y. Hasegawa,; R. Konno,; H. Nakano,; M. Kohmoto, Zero modes of tight-binding electrons on the honeycomb lattice. Phys. Rev. B 2006, 74, 033413.
[28]
Z. R. Liu,; J. Y. Wang,; J. L. Li, Dirac cones in two-dimensional systems: From hexagonal to square lattices. Phys. Chem. Chem. Phys. 2013, 15, 18855-18862.
[29]
R. Nandkishore,; L. S. Levitov,; A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 2012, 8, 158-163.
[30]
X. X. Wu,; M. Fink,; W. Hanke,; R. Thomale,; D. Di Sante, Unconventional superconductivity in a doped quantum spin Hall insulator. Phys. Rev. B 2019, 100, 041117.
[31]
Z. Jiang,; E. A. Henriksen,; L. C. Tung,; Y. J. Wang,; M. E. Schwartz,; M. Y. Han,; P. Kim,; H. L. Stormer, Infrared spectroscopy of landau levels of graphene. Phys. Rev. Lett. 2007, 98, 197403.
[32]
F. X. Ma,; Y. L. Jiao,; G. P. Gao,; Y. T. Gu,; A. Bilic,; Z. F. Chen,; A. J. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 2016, 16, 3022-3028.
[33]
Y. L. Jiao,; F. X. Ma,; J. Bell,; A. Bilic,; A. J. Du, Two-dimensional boron hydride sheets: High stability, massless Dirac fermions, and excellent mechanical properties. Angew. Chem. 2016, 128, 10448-10451.
[34]
Y. G. Yao,; F. Ye,; X. L. Qi,; S. C. Zhang,; Z. Fang, Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401.
[35]
W. F. Tsai,; C. Y. Huang,; T. R. Chang,; H. Lin,; H. T. Jeng,; A. Bansil, Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 2013, 4, 1500.
[36]
C. C. Liu,; W. X. Feng,; Y. G. Yao, Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.
[37]
K. R. Poeppelmeier,; J. D. Corbett, Metal-metal bonding in reduced scandium halides. Synthesis and crystal structure of scandium monochloride. Inorg. Chem. 1977, 16, 294-297.
[38]
R. L. Daake,; J. D. Corbett, Zirconium monobromide, a second double metal sheet structure. Some physical and chemical properties of the metallic zirconium monochloride and monobromide. Inorg. Chem. 1977, 16, 2029-2033.
[39]
D. G. Adolphson,; J. D. Corbett, Crystal structure of zirconium monochloride. A novel phase containing metal-metal bonded sheets. Inorg. Chem. 1976, 15, 1820-1823.
[40]
J. F. Marchiando,; B. N. Harmon,; S. H. Liu, Electronic structure of layered compounds ZrCl, ZrBr, ScCl and PtTe. Physica B+C 1980, 99, 259-263.
[41]
B. Wang,; Q. S. Wu,; Y. H. Zhang,; Y. L. Guo,; X. W. Zhang,; Q. H. Zhou,; S. Dong,; J. L. Wang, High curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two- dimensional scandium chlorine monolayers. Nanoscale Horiz. 2018, 3, 551-555.
[42]
M. M. Abutalib, Beryllium chloride monolayer as a direct semiconductor with a tunable band gap: First principles study. Optik 2019, 176, 579-585.
[43]
J. C. Park,; S. J. Yun,; H. Kim,; J. H. Park,; S. H. Chae,; S. J. An,; J. G. Kim,; S. M. Kim,; K. K. Kim,; Y. H. Lee, Phase-engineered synthesis of centimeter-scale 1T′- and 2H-molybdenum ditelluride thin films. ACS Nano 2015, 9, 6548-6554.
[44]
K. Chang,; X. Hai,; H. Pang,; H. B. Zhang,; L. Shi,; G. G. Liu,; H. M. Liu,; G. X. Zhao,; M. Li,; J. H. Ye, Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033-10041.
[45]
V. L. Deringer,; A. L. Tchougréeff,; R. Dronskowski, Crystal orbital hamilton population (cohp) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461-5466.
[46]
P. R. Wallace, The band theory of graphite. Phys. Rev. 1947, 71, 622.
[47]
Y. L. Jiao,; F. X. Ma,; C. M. Zhang,; J. Bell,; S. Sanvito,; A. J. Du, First-principles prediction of spin-polarized multiple Dirac rings in manganese fluoride. Phys. Rev. Lett. 2017, 119, 016403.
[48]
Z. Y. Ni,; Q. H. Liu,; K. C. Tang,; J. X. Zheng,; J. Zhou,; R. Qin,; Z. X. Gao,; D. P. Yu,; J. Lu, Tunable bandgap in silicene and germanene. Nano Lett. 2012, 12, 113-118.
[49]
N. D. Drummond,; V. Zólyomi,; V. I. Fal'ko, Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.
[50]
Y. B. Zhang,; T. T. Tang,; C. Girit,; Z. Hao,; M. C. Martin,; A. Zettl,; M. F. Crommie,; Y. R. Shen,; F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.
[51]
L. M. Yang,; K. Majumdar,; H. Liu,; Y. C. Du,; H. Wu,; M. Hatzistergos,; P. Y. Hung,; R. Tieckelmann,; W. Tsai,; C. Hobbs, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.
[52]
H. P. Komsa,; J. Kotakoski,; S. Kurasch,; O. Lehtinen,; U. Kaiser,; A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.
[53]
G. Giovannetti,; P. A. Khomyakov,; G. Brocks,; P. J. Kelly,; J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 2007, 76, 073103.
[54]
T. Cao,; G. Wang,; W. P. Han,; H. Q. Ye,; C. R. Zhu,; J. R. Shi,; Q. Niu,; P. H. Tan,; E. G. Wang,; B. L. Liu, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
[55]
C. M. Zhang,; Y. H. Nie,; S. Sanvito,; A. J. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 2019, 19, 1366-1370.
[56]
S. Bruzzone,; G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two- dimensional hexagonal boron-nitride. Appl. Phys. Lett. 2011, 99, 222108.
[57]
J. S. Qiao,; X. H. Kong,; Z. X. Hu,; F. Yang,; W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[58]
F. Schwierz,; J. Pezoldt,; R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261-8283.
Nano Research
Pages 584-589
Cite this article:
Zhang Y-F, Pan J, Banjade H, et al. Two-dimensional MX Dirac materials and quantum spin Hall insulators with tunable electronic and topological properties. Nano Research, 2021, 14(3): 584-589. https://doi.org/10.1007/s12274-020-3022-3
Topics:

898

Views

15

Crossref

0

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 12 June 2020
Revised: 28 July 2020
Accepted: 29 July 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return