AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate

Ning Feng1,§Jingjing Shen1,§Yu Chen1Chang Li1Yanling Hu1,2Lei Zhang1( )Shufen Chen1Quli Fan1Wei Huang1,3Lianhui Wang1( )
Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
School of Electrical and Control, Nanjing Polytechnic Institute, 188 Xinle Road, Nanjing 211500, China
Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China

§ Ning Feng and Jingjing Shen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Hydrogen peroxide (H2O2), as a signaling molecule, plays a vital role in a wide variety of signaling transduction processes, aging, and diseases. However, the excessive production of H2O2 causes various diseases. Herein, we develop a novel method for H2O2 detection in live cells via dark-field scattering spectroscopy with gold triangular nanoprisms (AuTNPs) as probes. The corners of AuTNPs would be gradually oxidatively etched by the strong coordination of Br which is generated by enzymatic reactions in the presence of horseradish peroxidase (HRP), bromide ion and trace hydrogen peroxide. Benefitting from the morphological change, the single AuTNP based plasmonic nanoprobe shows notable blueshifts and scattering color changes which could be real-time monitored under the dark-field microscopy. The peak position in the scattering spectra of individual AuTNP blueshifts linearly with the increase of H2O2 concentration, and exhibits high sensitivity to H2O2 in a large range from 2.5 to 100 μM with a low detection limit (LOD) of 0.74 μM. Moreover, the experimental results were supported by the simulated results via the finite-difference time-domain (FDTD) method. The nanoprobes have been further used for intracellular H2O2 detection in live cells. Besides, the etching of AuTNP also provides an alternative method to design novel plasmonic logic chips and write-once plasmonic memories.

Electronic Supplementary Material

Download File(s)
12274_2020_3023_MOESM1_ESM.pdf (2.8 MB)

References

[1]
M. B. Azad,; Y. Q. Chen,; S. B. Gibson, Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment. Antioxid Redox Signal. 2009, 11, 777-790.
[2]
Y. Nosaka,; A. Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.
[3]
D. Hernández-García,; C. D. Wood,; S. Castro-Obregón,; L. Covarrubias, Reactive oxygen species: A radical role in development? Free Radic. Biol. Med. 2010, 49, 130-143.
[4]
M. Giorgio,; M. Trinei,; E. Migliaccio,; P. G. Pelicci, Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell. Biol. 2007, 8, 722-728.
[5]
T. Finkel,; N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239-247.
[6]
S. G. Rhee,; S. W. Kang,; W. Jeong,; T. S. Chang,; K. S. Yang,; H. A. Woo, Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 2005, 17, 183-189.
[7]
N. V. Klassen,; D. Marchington,; H. C. E. McGowan, H2O2 determination by the I3-method and by KMnO4 titration. Anal. Chem. 1994, 66, 2921-2925.
[8]
M. L. Lian,; X. Chen,; Y. L. Lu,; W. S. Yang, Self-assembled peptide hydrogel as a smart biointerface for enzyme-based electrochemical biosensing and cell monitoring. ACS Appl. Mater. Interfaces 2016, 8, 25036-25042.
[9]
S. K. Maji,; S. Sreejith,; A. K. Mandal,; X. Ma,; Y. L. Zhao, Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: A hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 2014, 6, 13648-13656.
[10]
M. G. Ren,; B. B. Deng,; K. Zhou,; X. Q. Kong,; J. Y. Wang,; W. Y. Lin, Single fluorescent probe for dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells. Anal. Chem. 2017, 89, 552-555.
[11]
C. C. Gao,; Y. Tian,; R. B. Zhang,; J. Jing,; X. L. Zhang, Endoplasmic reticulum-directed ratiometric fluorescent probe for quantitive detection of basal H2O2. Anal. Chem. 2017, 89, 12945-12950.
[12]
X. Y. Jiang,; H. J. Wang,; R. Yuan,; Y. Q. Chai, Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H2O2 released from live cells. Anal. Chem. 2018, 90, 8462-8469.
[13]
Y. Wen,; K. Y. Liu,; H. R. Yang,; Y. Li,; H. C. Lan,; Y. Liu,; X. Y. Zhang,; T. Yi, A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal. Chem. 2014, 86, 9970-9976.
[14]
G. Masanta,; C. H. Heo,; C. S. Lim,; S. K. Bae,; B. R. Cho,; H. M. Kim, A mitochondria-localized two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chem. Commun. 2012, 48, 3518-3520.
[15]
J. Xu,; Y. Zhang,; H. Yu,; X. D. Gao,; S. J. Shao, Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal. Chem. 2016, 88, 1455-1461.
[16]
P. F. Gao,; Y. F. Li,; C. Z. Huang, Localized surface plasmon resonance scattering imaging and spectroscopy for real-time reaction monitoring. Appl. Spectrosc. Rev. 2019, 54, 237-249.
[17]
X. M. Ma,; S. He,; B. Qiu,; F. Luo,; L. H. Guo,; Z. Y. Lin, Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye. ACS Sens. 2019, 4, 782-791.
[18]
H. H. Rao,; X. Xue,; H. Q. Wang,; Z. H. Xue, Gold nanorod etching-based multicolorimetric sensors: Strategies and applications. J. Mater. Chem. C 2019, 7, 4610-4621.
[19]
H. T. Yang,; A. R. Liu,; M. Wei,; Y. J. Liu,; B. J. Lv,; W. Wei,; Y. J. Zhang,; S. Q. Liu, Visual, label-free telomerase activity monitor via enzymatic etching of gold nanorods. Anal. Chem. 2017, 89, 12094-12100.
[20]
Z. H. Chen,; C. Q. Chen,; H. W. Huang,; F. Luo,; L. H. Guo,; L. Zhang,; Z. Y. Lin,; G. N. Chen, Target-induced horseradish peroxidase deactivation for multicolor colorimetric assay of hydrogen sulfide in rat brain microdialysis. Anal. Chem. 2018, 90, 6222-6228.
[21]
J. Cheng,; Y. Liu,; X. D. Cheng,; Y. He,; E. S. Yeung, Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Anal. Chem. 2010, 82, 8744-8749.
[22]
T. Xie,; C. Jing,; W. Ma,; Z. F. Ding,; A. J. Gross,; Y. T. Long, Real-time monitoring for the morphological variations of single gold nanorods. Nanoscale 2015, 7, 511-517.
[23]
S. S. Sun,; M. X. Gao,; G. Lei,; H. Y. Zou,; J. Ma,; C. Z. Huang, Visually monitoring the etching process of gold nanoparticles by kI/I2 at single-nanoparticle level using scattered-light dark-field microscopic imaging. Nano Res. 2016, 9, 1125-1134.
[24]
Z. X. Chen,; J. J. Li,; X. Q. Chen,; J. T. Cao,; J. R. Zhang,; Q. H. Min,; J. J. Zhu, Single gold@silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J. Am. Chem. Soc. 2015, 137, 1903-1908.
[25]
G. Bodelón,; C. Costas,; J. Pérez-Juste,; I. Pastoriza-Santos,; L. M. Liz-Marzán, Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017, 13, 40-60.
[26]
A. M. Azevedo,; V. C. Martins,; D. M. F. Prazeres,; V. Vojinović,; J. M. S. Cabral,; L. P. Fonseca, Horseradish peroxidase: A valuable tool in biotechnology. Biotechnol. Ann. Rev. 2003, 9, 199-247.
[27]
L. Saa,; M. Coronado-Puchau,; V. Pavlov,; L. M. Liz-Marzán, Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 2014, 6, 7405-7409.
[28]
Y. J. Huang,; A. R. Ferhan,; Y. Gao,; A. Dandapat,; D. H. Kim, High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 2014, 6, 6496-6500.
[29]
L. Scarabelli,; M. Coronado-Puchau,; J. J. Giner-Casares,; J. Langer,; L. M. Liz-Marzán, Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833-5842.
[30]
L. Chen,; F. Ji,; Y. Xu,; L. He,; Y. F. Mi,; F. Bao,; B. Q. Sun,; X. H. Zhang,; Q. Zhang, High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201-7206.
[31]
G. Chandrasekar,; K. Mougin,; H. Haidara,; L. Vidal,; E. Gnecco, Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism. Appl. Surf. Sci. 2011, 257, 4175-4179.
[32]
Q. N. Zhu,; J. Wu,; J. W. Zhao,; W. H. Ni, Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions. Langmuir 2015, 31, 4072-4077.
[33]
W. H. Ni,; X. S. Kou,; Z. Yang,; J. F. Wang, Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2, 677-686.
[34]
G. J. Weng,; X. J. Dong,; J. J. Li,; J. W. Zhao, Halide ions can trigger the oxidative etching of gold nanorods with the iodide ions being the most efficient. J. Mater. Sci. 2016, 51, 7678-7690.
[35]
M. J. Männel,; L. P. Kreuzer,; C. Goldhahn,; J. Schubert,; M. J. Hartl,; M. Chanana, Catalytically active protein coatings: Toward enzymatic cascade reactions at the intercolloidal level. ACS Catal. 2017, 7, 1664-1672.
[36]
A. L. Crumbliss,; S. C. Perine,; J. Stonehuerner,; K. R. Tubergen,; J. G. Zhao,; R. W. Henkens,; J. P. O'Daly, Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol. Bioeng. 1992, 40, 483-490.
[37]
M. X. Zhang,; B. H. Huang,; X. Y. Sun,; D. W. Pang, Clickable gold nanoparticles as the building block of nanobioprobes. Langmuir 2010, 26, 10171-10176.
[38]
X. Guo,; Q. Zhang,; Y. H. Sun,; Q. Zhao,; J. Yang, Lateral etching of core-shell Au@metal nanorods to metal-tipped Au nanorods with improved catalytic activity. ACS Nano 2012, 6, 1165-1175.
[39]
J. An,; B. Tang,; X. H. Ning,; J. Zhou,; B. Zhao,; W. Q. Xu,; C. Corredor,; J. R. Lombardi, Photoinduced shape evolution:  From triangular to hexagonal silver nanoplates. J. Phys. Chem. C 2007, 111, 18055-18059.
[40]
B. Xiong,; R. Zhou,; J. R. Hao,; Y. H. Jia,; Y. He,; E. S. Yeung, Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles. Nat. Commun. 2013, 4, 1708.
[41]
G. Wang,; S. Y. Tao,; Y. D. Liu,; L. Guo,; G. H. Qin,; K. Ijiro,; M. Maeda,; Y. D. Yin, High-yield halide-free synthesis of biocompatible Au nanoplates. Chem. Commun. 2016, 52, 398-401.
[42]
N. Y. Chen,; Y. J. Zhang,; H. Y. Liu,; H. M. Ruan,; C. Dong,; Z. Y. Shen,; A. G. Wu, A supersensitive probe for rapid colorimetric detection of nickel ion based on a sensing mechanism of anti-etching. ACS Sustainable Chem. Eng. 2016, 4, 6509-6516.
[43]
Y. Y. Ni,; J. Li,; Z. Z. Huang,; K. He,; J. Q. Zhuang,; W. S. Yang, Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin. J. Nanopart. Res. 2013, 15, 2038.
[44]
K. M. Geraghty,; S. Chen,; J. E. Harthill,; A. F. Ibrahim,; R. Toth,; N. A. Morrice,; F. Vandermoere,; G. B. Moorhead,; D. G. Hardie,; C. MacKintosh, Regulation of multisite phosphorylation and 14-3-3 binding of as160 in response to IGF-1, EGF, PMA and AICAR. Biochem. J. 2007, 407, 231-241.
[45]
C. X. Wang,; Y. Du,; Q. Wu,; S. G. Xuan,; J. J. Zhou,; J. B. Song,; F. W. Shao,; H. W. Duan, Stimuli-responsive plasmonic core-satellite assemblies: I-motif DNA linker enabled intracellular pH sensing. Chem. Commun. 2013, 49, 5739-5741.
[46]
C. Jing,; Z. Gu,; Y. L. Ying,; D. W. Li,; L. Zhang,; Y. T. Long, Chrominance to dimension: A real-time method for measuring the size of single gold nanoparticles. Anal. Chem. 2012, 84, 4284-4291.
[47]
Y. Zhang,; Z. H. Shuai,; H. Zhou,; Z. M. Luo,; B. Liu,; Y. N. Zhang,; L. Zhang,; S. F. Chen,; J. Chao,; L. X. Weng, et al. Single-molecule analysis of microRNA and logic operations using a smart plasmonic nanobiosensor. J. Am. Chem. Soc. 2018, 140, 3988-3993.
Nano Research
Pages 3364-3370
Cite this article:
Feng N, Shen J, Chen Y, et al. Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate. Nano Research, 2020, 13(12): 3364-3370. https://doi.org/10.1007/s12274-020-3023-2
Topics:

822

Views

21

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 23 June 2020
Revised: 26 July 2020
Accepted: 31 July 2020
Published: 12 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return