AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-assembly of colloidal polymers from two-patch silica nanoparticles

Weiya Li1,2Bin Liu1,2Céline Hubert1,3Adeline Perro3Etienne Duguet2Serge Ravaine1( )
Univ. Bordeaux, CNRS, CRPP, UMR 5031, Pessac 33600, France
Univ. Bordeaux, CNRS, ICMCB, UMR 5026, Pessac 33600, France
Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence 33400, France
Show Author Information

Graphical Abstract

Abstract

We report the formation of colloidal polymers consisting of disk-like silica nanoparticles (NPs) with polystyrene (PS) chains at the bottom of their two cavities assembled through reduction of the solvent quality for the PS chains and linked by hydrophobic associations. We show that this NPs assembly exhibits a two-stage process involving reaction-controlled polymerization and diffusion-controlled polymerization. Colloidal polymer networks are produced by the incorporation of three-patch NPs, which serve as branching points between the colloidal chains. By co-assembling preformed homopolymers composed of patchy NPs of different sizes or surface chemical groups, block copolymers are also achieved. This study provides insight into the process of self-assembly of two-patch NPs by precisely designing the components to generate colloidal analogues of linear macromolecular chains.

Electronic Supplementary Material

Download File(s)
12274_2020_3024_MOESM1_ESM.pdf (1.8 MB)

References

[1]
L. Cademartiri,; K. J. M. Bishop, Programmable self-assembly. Nat. Mater. 2015, 14, 2-9.
[2]
S. Ravaine,; E. Duguet, Synthesis and assembly of patchy particles: Recent progress and future prospects. Curr. Opin. Colloid Interface Sci. 2017, 30, 45-53.
[3]
L. L. Zhang,; S. C. Glotzer, Self-Assembly of patchy particles. Nano Lett. 2004, 4, 1407-1413.
[4]
Y. F. Wang,; Y. Wang,; D. R. Breed,; V. N. Manoharan,; L. Feng,; A. D. Hollingsworth,; M. Weck,; D. J. Pine, Colloids with valence and specific directional bonding. Nature 2012, 491, 51-55.
[5]
E. Duguet,; C. Hubert,; C. Chomette,; A. A. Perro; S. Ravaine Patchy colloidal particles for programmed self assembly. C. R. Chimie 2016, 19, 173-182.
[6]
Y. Wang,; Y. F. Wang,; X. L. Zheng,; G. R. Yi,; S. Sacanna,; D. J. Pine,; M. Weck, Three-dimensional lock and key colloids. J. Am. Chem. Soc. 2014, 136, 6866-6869.
[7]
P. E. Rouet,; C. Chomette,; E. Duguet,; S. Ravaine, Colloidal molecules from valence-endowed nanoparticles by covalent chemistry. Angew. Chem., Int. Ed. 2018, 57, 15754-15757.
[8]
P. E. Rouet,, C. Chomette,; L. Adumeau,; E. Duguet,; S. Ravaine, Colloidal chemistry with patchy silica nanoparticles. Beilstein J. Nanotechnol. 2018, 9, 2989-2998.
[9]
W. Y. Li,; S. Ravaine,; E. Duguet, Clustering of asymmetric dumbbell-shaped silica/polystyrene nanoparticles by solvent-induced self-assembly. J. Colloid Interface Sci. 2020, 560, 639-648.
[10]
Q. Chen,; S. C. Bae,; S. Granick, Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381-384.
[11]
D. J. Lunn,; J. R. Finnegan,; I. Manners, Self-assembly of “patchy” nanoparticles: A versatile approach to functional hierarchical materials. Chem. Sci. 2015, 6, 3663-3673.
[12]
P. C. Song,; Y. F. Wang,; Y. Wang,; A. D. Hollingsworth,; M. Weck,; D. J. Pine,; M. D. Ward, Patchy particle packing under electric fields. J. Am. Chem. Soc. 2015, 137, 3069-3075.
[13]
J. Yan,; M. Han,; J. Zhang,; C. Xu,; E. Luijten,; S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095-1099.
[14]
L. J. Hill,; J. Pyun, Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl. Mater. Interfaces 2014, 6, 6022-6032.
[15]
S. Shaw,; L. Cademartiri, Nanowires and nanostructures that grow like polymer molecules. Adv. Mater. 2013, 25, 4829-4844.
[16]
K. Liu,; N. N. Zhao,; E. Kumacheva, Self-assembly of inorganic nanorods. Chem. Soc. Rev. 2011, 40, 656-671.
[17]
B. B. Luo,; J. W. Smith,; Z. X. Wu,; J. Kim,; Z. H. Ou,; Q. Chen, Polymerization-like co-assembly of silver nanoplates and patchy spheres. ACS Nano 2017, 11, 7626-7633.
[18]
S. Onishi,; M. Tokuda,; T. Suzuki,; H. Minami, Preparation of Janus particles with different stabilizers and formation of one-dimensional particle arrays. Langmuir 2015, 31, 674-678.
[19]
S. P. Zhao,; Y. Y. Wu,; W. S. Lu,; B. Liu, Capillary force driving directional 1D assembly of patchy colloidal discs. ACS Macro Lett. 2019, 8, 363-367.
[20]
H. Onoe,; K. Matsumoto,; I. Shimoyama, Three-dimensional sequential self-assembly of microscale objects. Small 2007, 3, 1383-1389.
[21]
K. K. Caswell,; J. N. Wilson,; U. H. F. Bunz,; C. J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 2003, 125, 13914-13915.
[22]
Z. H. Nie,; D. Fava,; E. Kumacheva,; S. Zou,; G. C. Walker,; M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609-614.
[23]
K. Liu,; Z. H. Nie,; N. N. Zhao,; W. Li,; M. Rubinstein,; E. Kumacheva, Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197-200.
[24]
R. M. Choueiri,; E. Galati,; A. Klinkova,; H. Thérien-Aubin,; E. Kumacheva, Linear assembly of patchy and non-patchy nanoparticles. Faraday Discuss. 2016, 191, 198-204.
[25]
A. Klinkova,; H. Thérien-Aubin,; R. M. Choueiri,; M. Rubinstein,; E. Kumacheva, Colloidal analogs of molecular chain stoppers. Proc. Natl. Acad. Sci. USA 2013, 110, 18775-18779.
[26]
Z. H. Nie,; D. Fava,; M. Rubinstein,; E. Kumacheva, “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: Effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 2008, 130, 3683-3689.
[27]
K. Liu,; C. Resetco,; E. Kumacheva, Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands. Nanoscale 2012, 4, 6574-6580.
[28]
S. Sacanna,; W. T. M. Irvine,; P. M. Chaikin,; D. J. Pine, Lock and key colloids. Nature 2010, 464, 575-578.
[29]
T. Tigges,; A. Walther, Hierarchical self-assembly of 3D-printed lock-and-key colloids through shape recognition. Angew. Chem., Int. Ed. 2016, 55, 11261-11265.
[30]
T. Tigges,; T. Heuser,; R. Tiwari,; A. Walther, 3D DNA origami cuboids as monodisperse patchy nanoparticles for switchable hierarchical self-assembly. Nano Lett. 2016, 16, 7870-7874.
[31]
A. H. Gröschel,; F. H. Schacher,; H. Schmalz,; O. V. Borisov,; E. B. Zhulina,; A. Walther,; A. H. E. Müller, Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 2012, 3, 710.
[32]
A. H. Gröschel,; A. Walther,; T. I. Löbling,; F. H. Schacher,; H. Schmalz,; A. H. E. Müller, Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247-251.
[33]
T. I. Löbling,; O. Borisov,; J. S. Haataja,; O. Ikkala,; A. H. Gröschel,; A. H. E. Müller, Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nat. Commun. 2016, 7, 12097.
[34]
J. H. Kim,; W. J. Kwon,; B. H. Sohn, Supracolloidal polymer chains of diblock copolymer micelles. Chem. Commun. 2015, 51, 3324-3327.
[35]
K. Kim,; S. Jang,; J. Jeon,; D. Kang,; B. H. Sohn, Fluorescent supracolloidal chains of patchy micelles of diblock copolymers functionalized with fluorophores. Langmuir 2018, 34, 4634-4639.
[36]
S. Lee,; S. Jang,; K. Kim,; J. Jeon,; S. S. Kim,; B. H. Sohn, Branched and crosslinked supracolloidal chains with diblock copolymer micelles having three well-defined patches. Chem. Commun. 2016, 52, 9430-9433.
[37]
S. Jang,; K. Kim,; J. Jeon,; D. Kang,; B. H. Sohn, Supracolloidal chains of patchy micelles of diblock copolymers with in situ synthesized nanoparticles. Soft Matter 2017, 13, 6756-6760.
[38]
H. B. Qiu,; Z. M. Hudson,; M. A. Winnik,; I. Manners, Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 2015, 347, 1329-1332.
[39]
A. Désert,; J. Morele,; J. C. Taveau,; O. Lambert,; M. Lansalot,; E. Bourgeat-Lami,; A. Thill,; O. Spalla,; L. Belloni,; S. Ravaine, et al. Multipod-like silica/polystyrene clusters. Nanoscale 2016, 8, 5454-5469.
[40]
A. Désert,; C. Hubert,; Z. Fu,; L. Moulet,; J. Majimel,; P. Barboteau,; A. Thill,; M. Lansalot,; E. Bourgeat-Lami,; E. Duguet, et al. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew. Chem., Int. Ed. 2013, 52, 11068-11072.
[41]
D. G. Duff,; A. Baiker,; P. P. Edwards, A new hydrosol of gold clusters. J. Chem. Soc., Chem. Commun. 1993, 96-98.
[42]
C. Chomette,; E. Duguet,; S. Mornet,; E. Yammine,; V. N. Manoharan,; N. B. Schade,; C. Hubert,; S. Ravaine,; A. Perro,; M. Tréguer-Delapierre, Templated growth of gold satellites on dimpled silica cores. Faraday Discuss. 2016, 191, 105-116.
[43]
C. L. Yi,; Y. Q. Yang,; Z. H. Nie, Alternating copolymerization of inorganic nanoparticles. J. Am. Chem. Soc. 2019, 141, 7917-7925.
[44]
P. J. Flory, Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
[45]
I. Coluzza,; P. D. J. Van Oostrum,; B. Capone,; E. Reimhult,; C. Dellago, Design and folding of colloidal patchy polymers. Soft Matter 2013, 9, 938-944.
Nano Research
Pages 3371-3376
Cite this article:
Li W, Liu B, Hubert C, et al. Self-assembly of colloidal polymers from two-patch silica nanoparticles. Nano Research, 2020, 13(12): 3371-3376. https://doi.org/10.1007/s12274-020-3024-1
Topics:

709

Views

12

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 03 January 2020
Revised: 31 July 2020
Accepted: 01 August 2020
Published: 09 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return