AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Water triggered interfacial synthesis of highly luminescent CsPbX3:Mn2+ quantum dots from nonluminescent quantum dots

Jiejun Ren1Xiaopeng Zhou1Yuhua Wang1( )
Department of Materials Science, School of Physical Science and Technology, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Lanzhou University, Lanzhou 730000, China
Show Author Information

Graphical Abstract

Abstract

Currently, lead halide perovskite quantum dots (PeQDs) have attracted great attention due to their spectacular photophysical properties. However, the toxicity of Pb2+ heavy metal ions in CsPbX3 PeQDs limits their practical applications. Herein, a facile post-treatment doping method is proposed, which enables the preparation of highly luminescent low-toxic CsPbX3:Mn2+ PeQDs from nonluminescent Cs4PbX6 PeQDs at water interface. The monodispersed CsPbX3:Mn2+ PeQDs exhibit excellent photophysical properties, including high photoluminescence quantum yield up to 87%. The reaction process and doping mechanism are deeply explored through in-situ monitoring. By simply adjusting the halide composition of the original Cs4PbX6 PeQDs or Mn doping concentration, a series of CsPbX3:Mn2+ PeQDs with adjustable emission could be obtained. Further, the CsPbX3:Mn2+ Q-LED was fabricated and exhibited excellent orange light with the color coordinates of (0.564, 0.399), correlated color temperature (CCT) of 1,918 K, and luminous efficiency (LE) of 24 lm/W, which illustrate the great promise in light emitting diode (LED) applications. This work not only provides a facile method for the preparation of highly luminescent low-toxic CsPbX3:Mn2+ PeQDs, but also provides insights into the mechanism of doping process.

Electronic Supplementary Material

Download File(s)
12274_2020_3026_MOESM1_ESM.pdf (3.3 MB)

References

[1]
J. M. Liu,; L. L. Shen,; Y. Chen,; Y. Zhao,; Y. Q. Zhang,; M. F. F. Jin,; H. S. Yang,; Y. J. Zhang,; W. D. Xiang,; X. J. Liang, Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering. J Mater. Chem. C 2019, 7, 13606-13612.
[2]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[3]
J. Z. Song,; J. H. Li,; X. M. Li,; L. M. Xu,; Y. H. Dong,; H. B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[4]
S. Guarnera,; A. Abate,; W. Zhang,; J. M. Foster,; G. Richardson,; A. Petrozza,; H. J. Snaith, Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 2015, 6, 432-437.
[5]
M. V. Kovalenko,; M. I. Bodnarchuk, Lead halide perovskite nanocrystals: From discovery to self-assembly and applications. CHIMIA Int. J. Chem. 2017, 71, 461-470.
[6]
X. M. Li,; Y. Wu,; S. L. Zhang,; B. Cai,; Y. Gu,; J. Z. Song,; H. B. Zeng, CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.
[7]
V. Malgras,; S. Tominaka,; J. W. Ryan,; J. Henzie,; T. Takei,; K. Ohara,; Y. Yamauchi, Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 2016, 138, 13874-13881.
[8]
H. C. Wang,; Z. Bao,; H. Y. Tsai,; A. C. Tang,; R. S. Liu, Perovskite quantum dots and their application in light-emitting diodes. Small 2018, 14, 1702433.
[9]
J. J. Ren,; X. Dong,; G. Y. Zhang,; T. R. Li,; Y. H. Wang, Air-stable and water-resistant all-inorganic perovskite quantum dot films for white-light-emitting applications. New J. Chem. 2017, 41, 13961-13967.
[10]
Y. Wei,; X. R. Deng,; Z. X. Xie,; X. C. Cai,; S. S. Liang,; P. A. Ma,; Z. Y. Hou,; Z. Y. Cheng,; J. Lin, Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater. 2017, 27, 1703535.
[11]
J. J. Ren,; T. R. Li,; X. P. Zhou,; X. Dong,; A. V. Shorokhov,; M. B. Semenov,; V. D. Krevchik,; Y. H. Wang, Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem. Eng. J. 2019, 358, 30-39.
[12]
J. J. Ren,; X. P. Zhou,; Y. H. Wang, Dual-emitting CsPbX3@ZJU-28 (X=Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chem. Eng. J. 2020, 391, 123622.
[13]
C. L. Li,; Z. G. Zang,; W. W. Chen,; Z. P. Hu,; X. S. Tang,; W. Hu,; K. Sun,; X. M. Liu,; W. M. Chen, Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 2016, 24, 15071-15078.
[14]
G. R. Li,; F. W. R. Rivarola,; N. J. L. K. Davis,; S. Bai,; T. C. Jellicoe,; F. de la Peña,; S. C. Hou,; C. Ducati,; F. Gao,; R. H. Friend, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528-3534.
[15]
X. Y. Shen,; C. Sun,; X. Bai,; X. Y. Zhang,; Y. Wang,; Y. D. Wang,; H. W. Song,; W. W. Yu, Efficient and stable CsPb(Br/I)3@anthracene composites for white light-emitting devices. ACS Appl. Mater. Interfaces 2018, 10, 16768-16775.
[16]
C. Sun,; Y. Zhang,; C. Ruan,; C. Y. Yin,; X. Y. Wang,; Y. D. Wang,; W. W. Yu, Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088-10094.
[17]
H. C. Yoon,; H. Kang,; S. Lee,; J. H. Oh,; H. Yang,; Y. R. Do, Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 2016, 8, 18189-18200.
[18]
Y. Wei,; H. Xiao,; Z. X. Xie,; S. Liang,; S. S. Liang,; X. C. Cai,; S. S. Huang,; A. A. Al Kheraif,; H. S. Jang,; Z. Y. Cheng, et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv. Opt. Mater. 2018, 6, 1701343.
[19]
J. R. Hao,; X. Y. Qu,; L. Qiu,; G. G. Li,; Y. Wei,; G. C. Xing,; H. Q. Wang,; C. J. Yan,; H. S. Jang,; Z. Y. Cheng, et al. One-step loading on natural mineral Halloysite nanotube: An effective way to enhance the stability of perovskite CsPbX3 (X = Cl, Br, I) quantum dots. Adv. Opt. Mater. 2019, 7, 1801323.
[20]
Y. Wei,; K. Li,; Z. Y. Cheng,; M. M. Liu,; H. Xiao,; P. P. Dang,; S. S. Liang,; Z. J. Wu,; H. Z. Lian,; J. Lin, Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: A novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv. Mater. 2019, 31, 1807592.
[21]
Y. Wei,; Z. Y. Cheng,; J. Lin, An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310-350.
[22]
D. W. Zhang,; J. Zhao,; Q. L. Liu,; Z. G. Xia, Synthesis and luminescence properties of CsPbX3@Uio-67 composites toward stable photoluminescence convertors. Inorg. Chem. 2019, 58, 1690-1696.
[23]
H. C. Wang,; S. Y. Lin,; A. C. Tang,; B. P. Singh,; H. C. Tong,; C. Y. Chen,; Y. C. Lee,; T. L. Tsai,; R. S. Liu, Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924-7929.
[24]
R. E. Beal,; D. J. Slotcavage,; T. Leijtens,; A. R. Bowring,; R. A. Belisle,; W. H. Nguyen,; G. F. Burkhard,; E. T. Hoke,; M. D. McGehee, Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746-751.
[25]
Q. S. Ma,; S. J. Huang,; X. M. Wen,; M. A. Green,; A. W. Y. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 2016, 6, 1502202.
[26]
C. L. Li,; C. Han,; Y. B. Zhang,; Z. G. Zang,; M. Wang,; X. S. Tang,; J. H. Du, Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Mater. Solar Cells 2017, 172, 341-346.
[27]
P. Ramasamy,; D. H. Lim,; B. Kim,; S. H. Lee,; M. S. Lee,; J. S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun.2016, 52, 2067-2070.
[28]
D. D. Yan,; T. C. Shi,; Z. G. Zang,; T. W. Zhou,; Z. Z. Liu,; Z. Y. Zhang,; J. Du,; Y. X. Leng,; X. S. Tang, Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 2019, 15, 1901173.
[29]
S. Yuan,; D. Q. Chen,; X. Y. Li,; J. S. Zhong,; X. H. Xu, In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918-18926.
[30]
M. Liu,; G. H. Zhong,; Y. M. Yin,; J. S. Miao,; K. Li,; C. Q. Wang,; X. R. Xu,; C. Shen,; H. Meng, Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.
[31]
J. Sun,; J. Yang,; J. I. Lee,; J. H. Cho,; M. S. Kang, Lead-free perovskite nanocrystals for light-emitting devices. J. Phys. Chem. Lett. 2018, 9, 1573-1583.
[32]
W. van der Stam,; J. J. Geuchies,; T. Altantzis,; K. H. W. van den Bos,; J. D. Meeldijk,; S. Van Aert,; S. Bals,; D. Vanmaekelbergh,; C. de Mello Donega, Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087-4097.
[33]
A. Shapiro,; M. W. Heindl,; F. Horani,; M. H. Dahan,; J. Tang,; Y. Amouyal,; E. Lifshitz, Significance of Ni doping in CsPbX3 nanocrystals via postsynthesis cation-anion coexchange. J. Phys. Chem. C 2019, 123, 24979-24987.
[34]
Z. L. Zhang,; L. L. Shen,; H. L. Zhang,; L. Ding,; G. Z. Shao,; X. J. Liang,; W. D. Xiang, Novel red-emitting CsPb1-xTixI3 perovskite qds@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs. Chem. Eng. J. 2019, 378, 122125.
[35]
J. Chen,; Z. Y. Luo,; Y. P. Fu,; X. X. Wang,; K. J. Czech,; S. H. Shen,; L. J. Guo,; J. C. Wright,; A. L. Pan,; S. Jin, Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires. ACS Energy Lett. 2019, 4, 1045-1052.
[36]
R. X. Yang,; J. M. Skelton,; E. L. da Silva,; J. M. Frost,; A. Walsh, Spontaneous octahedral tilting in the cubic inorganic cesium halide perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I). J. Phys. Chem. Lett. 2017, 8, 4720-4726.
[37]
Q. Q. Zhang,; H. Mushahali,; H. M. Duan,; M. H. Lee,; Q. Jing, The linear and nonlinear optical response of CsGeX3 (X = Cl, Br, and I): The finite field and first-principles investigation. Optik 2019, 179, 89-98.
[38]
L. J. Chen, Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Adv. 2018, 8, 18396-18399.
[39]
Y. Kang,; S. Kang,; S. Han, Influence of Bi doping on physical properties of lead halide perovskites: A comparative first-principles study between CsPbI3 and CsPbBr3. Mater. Today Adv. 2019, 3, 100019.
[40]
J. J. Zhang,; L. Yang,; R. Y. Liu,; L. J. Chen, Stabilization of all-inorganic α-CsPbI3 Perovskite by Bi or Sb doping. Mater. Res. Express 2019, 6, 105529.
[41]
M. R. Filip,; X. L. Liu,; A. Miglio,; G. Hautier,; F. Giustino, Phase diagrams and stability of lead-free halide double perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. J. Phys. Chem. C 2017, 122, 158-170.
[42]
S. Thapa,; G. C. Adhikari,; H. Y. Zhu,; A. Grigoriev,; P. F. Zhu, Zn-alloyed all-inorganic halide perovskite-based white light-emitting diodes with superior color quality. Sci. Rep. 2019, 9, 18636.
[43]
H. W. Liu,; Z. N. Wu,; J. R. Shao,; D. Yao,; H. Gao,; Y. Liu,; W. L. Yu,; H. Zhang,; B. Yang, CsPbxMn1-xCl3 Perovskite quantum dots with high Mn substitution ratio. ACS Nano 2017, 11, 2239-2247.
[44]
W. Y. Liu,; Q. L. Lin,; H. B. Li,; K. F. Wu,; I. Robel,; J. M. Pietryga,; V. I. Klimov, Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954-14961.
[45]
C. C. Lin,; K. Y. Xu,; D. Wang,; A. Meijerink, Luminescent manganese-doped CsPbCl3 perovskite quantum dots. Sci. Rep. 2017, 7, 45906.
[46]
D. Q. Chen,; G. L. Fang,; X. Chen, Silica-coated Mn-Doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: Exciton-to-Mn energy transfer and blue-excitable solid-state lighting. ACS Appl. Mater. Interfaces 2017, 9, 40477-40487.
[47]
S. Ye,; J. Y. Sun,; Y. H. Han,; Y. Y. Zhou,; Q. Y. Zhang, Confining Mn2+-doped lead halide perovskite in zeolite-Y as ultrastable orange-red phosphor composites for white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 24656-24664.
[48]
Q. Y. Li,; S. H. Ji,; X. Yuan,; J. Li,; Y. Fan,; J. H. Zhang,; J. L. Zhao,; H. B. Li, Ultraviolet light-induced degradation of luminescence in Mn-doped CsPbCl3 nanocrystals. J. Phys. Chem. C 2019, 123, 14849-14857.
[49]
F. Li,; Z. G. Xia,; Y. Gong,; L. Gu,; Q. L. Liu, Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction. J. Mater. Chem. C 2017, 5, 9281-9287.
[50]
F. Li,; Z. G. Xia,; C. F. Pan,; Y. Gong,; L. Gu,; Q. L. Liu,; J. Z. Zhang, High Br- content CsPb(ClyBr1-y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering. ACS Appl. Mater. Interfaces 2018, 10, 11739-11746.
[51]
J. R. Zhu,; X. L. Yang,; Y. H. Zhu,; Y. W. Wang,; J. Cai,; J. H. Shen,; L. Y. Sun,; C. Z. Li, Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio. J. Phys. Chem. Lett. 2017, 8, 4167-4171.
[52]
W. J. Mir,; M. Jagadeeswararao,; S. Das,; A. Nag, Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Lett. 2017, 2, 537-543.
[53]
W. Xu,; F. M. Li,; F. Y. Lin,; Y. Chen,; Z. X. Cai,; Y. Wang,; X. Chen, Synthesis of CsPbCl3-Mn nanocrystals via cation exchange. Adv. Opt. Mater. 2017, 5, 1700520.
[54]
D. Q. Chen,; S. Zhou,; G. L. Fang,; X. Chen,; J. S. Zhong, Fast room-temperature cation exchange synthesis of Mn-doped CsPbCl3 nanocrystals driven by dynamic halogen exchange. ACS Appl. Mater. Interfaces 2018, 10, 39872-39878.
[55]
W. J. Mir,; Y. Mahor,; A. Lohar,; M. Jagadeeswararao,; S. Das,; S. Mahamuni,; A. Nag, Postsynthesis doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals for downconversion emission. Chem. Mater. 2018, 30, 8170-8178.
[56]
Q. A. Akkerman,; S. Park,; E. Radicchi,; F. Nunzi,; E. Mosconi,; F. De Angelis,; R. Brescia,; P. Rastogi,; M. Prato,; L. Manna, Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 Nanocrystals. Nano Lett. 2017, 17, 1924-1930.
[57]
L. Tan,; W. Wang,; Q. Li,; Z. S. Luo,; C. Zou,; M. Tang,; L. M. Zhang,; J. Q. He,; Z. W. Quan, Colloidal syntheses of zero-dimensional Cs4SnX6 (X = Br, I) nanocrystals with high emission efficiencies. Chem. Commun. 2020, 56, 387-390.
[58]
D. Yang,; P. L. Li,; Y. T. Zou,; M. H. Cao,; H. C. Hu,; Q. X. Zhong,; J. X. Hu,; B. Q. Sun,; S. Duhm,; Y. Xu, et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 2019, 31, 1575-1583.
[59]
Z. Li,; Q. S. Hu,; Z. F. Tan,; Y. Yang,; M. Y. Leng,; X. L. Liu,; C. Ge,; G. D. Niu,; J. Tang, Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence. ACS Appl. Mater. Interfaces 2018, 10, 43915-43922.
[60]
L. Z. Wu,; H. C. Hu,; Y. Xu,; S. Jiang,; M. Chen,; Q. X. Zhong,; D. Yang,; Q. P. Liu,; Y. Zhao,; B. Q. Sun, et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799-5804.
[61]
Y. M. Zhang,; B. L. Fan,; Y. Z. Liu,; H. X. Li,; K. M. Deng,; J. Y. Fan, Quasi-self-trapped Frenkel-exciton near-UV luminescence with large Stokes shift in wide-bandgap Cs4PbCl6 nanocrystals. Appl. Phys. Lett. 2018, 112, 183101.
[62]
Y. Liu,; F. Li,; Q. L. Liu,; Z. G. Xia, Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater. 2018, 30, 6922-6929.
[63]
D. Q. Chen,; S. Zhou,; F. F. Tian,; H. T. Ke,; N. Z. Jiang,; S. J. Wang,; Y. Z. Peng,; Y. Liu, Halogen-hot-injection synthesis of Mn-doped CsPb(Cl/Br)3 nanocrystals with blue/orange dual-color luminescence and high photoluminescence quantum yield. Adv. Opt. Mater. 2019, 7, 1901082.
[64]
T. Ahmed,; S. Seth,; A. Samanta, Boosting the photoluminescence of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts. Chem. Mater. 2018, 30, 3633-3637.
Nano Research
Pages 3387-3395
Cite this article:
Ren J, Zhou X, Wang Y. Water triggered interfacial synthesis of highly luminescent CsPbX3:Mn2+ quantum dots from nonluminescent quantum dots. Nano Research, 2020, 13(12): 3387-3395. https://doi.org/10.1007/s12274-020-3026-z
Topics:

911

Views

50

Crossref

N/A

Web of Science

44

Scopus

2

CSCD

Altmetrics

Received: 12 June 2020
Revised: 25 July 2020
Accepted: 01 August 2020
Published: 04 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return