Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Competing magnetic states in silicene and germanene 2D ferromagnets

Dmitry V. Averyanov1Ivan S. Sokolov1Mikhail S. Platunov2,Fabrice Wilhelm2Andrei Rogalev2Pierluigi Gargiani3Manuel Valvidares3Nicolas Jaouen4Oleg E. Parfenov1Alexander N. Taldenkov1Igor A. Karateev1Andrey M. Tokmachev1Vyacheslav G. Storchak1()
National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia
ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
Synchrotron SOLEIL, L’Orme des Merisiers, Gyf-sur-Yvette 91192, France

Present address: Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50, bld. 38, 660036 Krasnoyarsk, Russia

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Two-dimensional (2D) magnets have recently developed into a class of stoichiometric materials with prospective applications in ultra-compact spintronics and quantum computing. Their functionality is particularly rich when different magnetic orders are competing in the same material. Metalloxenes REX2 (RE = Eu, Gd; X = Si, Ge), silicene or germanene—heavy counterparts of graphene—coupled with a layer of rare-earth metals, evolve from three-dimensional (3D) antiferromagnets in multilayer structures to 2D ferromagnets in a few monolayers. This evolution, however, does not lead to fully saturated 2D ferromagnetism, pointing at a possibility of coexisting/ competing magnetic states. Here, REX2 magnetism is explored with element-selective X-ray magnetic circular dichroism (XMCD). The measurements are carried out for GdSi2, EuSi2, GdGe2, and EuGe2 of different thicknesses down to 1 monolayer employing K absorption edges of Si and Ge as well as M and L edges of the rare-earths. They access the magnetic state in REX2 and determine the seat of magnetism, orbital, and spin contributions to the magnetic moment. High-field measurements probe remnants of the bulk antiferromagnetism in 2D REX2. The results provide a new platform for studies of complex magnetic structures in 2D materials.

References

[1]
C. Gong,; L. Li,; Z. L. Li,; H. W. Ji,; A. Stern,; Y. Xia,; T. Cao,; W. Bao,; C. Z. Wang,; Y. Wang, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265-269.
[2]
B. Huang,; G. Clark,; E. Navarro-Moratalla,; D. R. Klein,; R. Cheng,; K. L. Seyler,; D. Zhong,; E. Schmidgall,; M. A. McGuire,; D. H. Cobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[3]
K. S. Burch,; D. Mandrus,; J. G. Park, Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47-52.
[4]
C. Gong,; X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.
[5]
M. Gibertini,; M. Koperski,; A. F. Morpurgo,; K. S. Novoselov, Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408-419.
[6]
M. Bonilla,; S. Kolekar,; Y. J. Ma,; H. C. Diaz,; V. Kalappattil,; R. Das,; T. Eggers,; H. R. Gutierrez,; M. H. Phan,; M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.
[7]
M. Nakano,; Y. Wang,; S. Yoshida,; H. Matsuoka,; Y. Majima,; K. Ikeda,; Y. Hirata,; Y. Takeda,; H. Wadati,; Y. Kohama, et al. Intrinsic 2D ferromagnetism in V5Se8 epitaxial thin films. Nano Lett. 2019, 19, 8806-8810.
[8]
D. J. O’Hara,; T. C. Zhu,; A. H. Trout,; A. S. Ahmed,; Y. K. Luo,; C. H. Lee,; M. R. Brenner,; S. Rajan,; J. A. Gupta,; D. W. McComb, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125-3131.
[9]
A. P. Balan,; S. Radhakrishnan,; C. F. Woellner,; S. K. Sinha,; L. Z. Deng,; C. de los Reyes,; B. M. Rao,; M. Paulose,; R. Neupane,; A. Apte, et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018, 13, 602-609.
[10]
Y. J. Deng,; Y. J. Yu,; Y. C. Song,; J. Z. Zhang,; N. Z. Wang,; Z. Y. Sun,; Y. F. Yi,; Y. Z. Wu,; S. W. Wu,; J. Y. Zhu, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94-99.
[11]
A. M. Tokmachev,; D. V. Averyanov,; O. E. Parfenov,; A. N. Taldenkov,; I. A. Karateev,; I. S. Sokolov,; O. A. Kondratev,; V. G. Storchak, Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672.
[12]
A. M. Tokmachev,; D. V. Averyanov,; A. N. Taldenkov,; O. E. Parfenov,; I. A. Karateev,; I. S. Sokolov,; V. G. Storchak, Lanthanide f7 metalloxenes—A class of intrinsic 2D ferromagnets. Mater. Horiz. 2019, 6, 1488-1496.
[13]
Z. Y. Sun,; Y. F. Yi,; T. C. Song,; G. Clark,; B. Huang,; Y. W. Shan,; S. Wu,; D. Huang,; C. L. Gao,; Z. H. Chen, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497-501.
[14]
L. Thiel,; Z. Wang,; M. A. Tschudin,; D. Rohner,; I. Gutiérrez-Lezama,; N. Ubrig,; M. Gibertini,; E. Giannini,; A. F. Morpurgo,; P. Maletinsky, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973-976.
[15]
B. Niu,; T. Su,; B. A. Francisco,; S. Ghosh,; F. Kargar,; X. Huang,; M. Lohmann,; J. X. Li,; Y. D. Xu,; T. Taniguchi, et al. Coexistence of magnetic orders in two-dimensional magnet CrI3. Nano Lett. 2020, 20, 553-558.
[16]
B. Huang,; G. Clark,; D. R. Klein,; D. MacNeill,; E. Navarro-Moratalla,; K. L. Seyler,; N. Wilson,; M. A. McGuire,; D. H. Cobden,; D. Xiao, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544-548.
[17]
S. W. Jiang,; L. Z. Li,; Z. F. Wang,; K. F. Mak,; J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549-553.
[18]
T. C. Song,; Z. Y. Fei,; M. Yankowitz,; Z. Lin,; Q. N. Jiang,; K. Hwangbo,; Q. Zhang,; B. S. Sun,; T. Taniguchi,; K. Watanabe, et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298-1302.
[19]
D. R. Klein,; D. MacNeill,; J. L. Lado,; D. Soriano,; E. Navarro-Moratalla,; K. Watanabe,; T. Taniguchi,; S. Manni,; P. Canfield,; J. Fernández-Rossier, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218-1222.
[20]
A. Molle,; J. Goldberger,; M. Houssa,; Y. Xu,; S. C. Zhang,; D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163-169.
[21]
A. J. Mannix,; B. Kiraly,; M. C. Hersam,; N. P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.
[22]
L. Tao,; E. Cinquanta,; D. Chiappe,; C. Grazianetti,; M. Fanciulli,; M. Dubey,; A. Molle,; D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.
[23]
Y. Y. Wang,; J. X. Zheng,; Z. Y. Ni,; R. X. Fei,; Q. H. Liu,; R. Quhe,; C. Y. Xu,; J. Zhou,; Z. X. Gao,; J. Lu, Half-metallic silicene and germanene nanoribbons: Towards high-performance spintronics device. Nano 2012, 7, 1250037.
[24]
J. J. Zhao,; H. S. Liu,; Z. M. Yu,; R. Quhe,; S. Zhou,; Y. Y. Wang,; C. C. Liu,; H. X. Zhong,; N. N. Han,; J. Lu, et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.
[25]
A. M. Tokmachev,; D. V. Averyanov,; I. A. Karateev,; O. E. Parfenov,; O. A. Kondratev,; A. N. Taldenkov,; V. G. Storchak, Engineering of magnetically intercalated silicene compound: An overlooked polymorph of EuSi2. Adv. Funct. Mater. 2017, 27, 1606603.
[26]
O. E. Parfenov,; D. V. Averyanov,; A. M. Tokmachev,; I. S. Sokolov,; I. A. Karateev,; A. N. Taldenkov,; V. G. Storchak, High-mobility carriers in germanene derivatives. Adv. Funct. Mater. 2020, 30, 1910643.
[27]
O. E. Parfenov,; A. M. Tokmachev,; D. V. Averyanov,; I. A. Karateev,; I. S. Sokolov,; A. N. Taldenkov,; V. G. Storchak, Layer-controlled laws of electron transport in two-dimensional ferromagnets. Mater. Today 2019, 29, 20-25.
[28]
X. C. Zhai,; R. Wen,; X. F. Zhou,; W. Chen,; W. Yan,; L. Y. Gong,; Y. Pu,; X. A. Li, Valley-mediated and electrically switched bipolar-unipolar transition of the spin-diode effect in heavy group-IV monolayers. Phys. Rev. Appl. 2019, 11, 064047.
[29]
J. G. Feng,; D. Biswas,; A. Rajan,; M. D. Watson,; F. Mazzola,; O. J. Clark,; K. Underwood,; I. Marković,; M. McLaren,; A. Hunter, et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493-4499.
[30]
P. K. J. Wong,; W. Zhang,; F. Bussolotti,; X. M. Yin,; T. S. Herng,; L. Zhang,; Y. L. Huang,; G. Vinai,; S. Krishnamurthi,; D. W. Bukhvalov, et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.
[31]
D. V. Averyanov,; Y. G. Sadofyev,; A. M. Tokmachev,; A. E. Primenko,; I. A. Likhachev,; V. G. Storchak, Direct epitaxial integration of the ferromagnetic semiconductor EuO with silicon for spintronic applications. ACS Appl. Mater. Interfaces 2015, 7, 6146-6152.
[32]
H. E. Nigh,; S. Legvold,; F. H. Spedding, Magnetization and electrical resistivity of gadolinium single crystals. Phys. Rev. 1963, 132, 1092-1097.
[33]
S. Sanna,; C. Dues,; W. G. Schmidt,; F. Timmer,; J. Wollschläger,; M. Franz,; S. Appelfeller,; M. Dähne, Rare-earth silicide thin films on the Si(111) surface. Phys. Rev. B 2016, 93, 195407.
[34]
W. Yu,; J. Li,; T. S. Herng,; Z. S. Wang,; X. X. Zhao,; X. Chi,; W. Fu,; I. Abdelwahab,; J. Zhou,; J. D. Dan, et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.
[35]
K. F. Mak,; J. Shan,; D. C. Ralph, Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646-661.
[36]
A. Frisk,; L. B. Duffy,; S. L. Zhang,; G. van der Laan,; T. Hesjedal, Magnetic X-ray spectroscopy of two-dimensional CrI3 layers. Mater. Lett. 2018, 232, 5-7.
[37]
Q. Li,; M. M. Yang,; C. Gong,; R. V. Chopdekar,; A. T. N’Diaye,; J. Turner,; G. Chen,; A. Scholl,; P. Shafer,; E. Arenholz, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974-5980.
[38]
S. Y. Park,; D. S. Kim,; Y. Liu,; J. Hwang,; Y. Kim,; W. Kim,; J. Y. Kim,; C. Petrovic,; C. Hwang,; S. K. Mo, et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 2020, 20, 95-100.
[39]
J. Girovsky,; J. Nowakowski,; M. E. Ali,; M. Baljozovic,; H. R. Rossmann,; T. Nijs,; E. A. Aeby,; S. Nowakowska,; D. Siewert,; G. Srivastava, et al. Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice. Nat. Commun. 2017, 8, 15388.
[40]
S. Schulz,; I. A. Nechaev,; M. Güttler,; G. Poelchen,; A. Generalov,; S. Danzenbächer,; A. Chikina,; S. Seiro,; K. Kliemt,; A. Y. Vyazovskaya, et al. Emerging 2D-ferromagnetism and strong spin-orbit coupling at the surface of valence-fluctuating EuIr2Si2. npj Quantum Mater. 2019, 4, 26.
[41]
G. Y. Guo, Interpretation of X-ray circular dichroism: Multiple-scattering theory approach. Phys. Rev. B 1998, 57, 10295-10298.
[42]
Y. F. Li,; K. C. Zhang,; Y. Liu, Structural, magnetic and topological properties in rare-earth-adsorbed silicene system. J. Magn. Magn. Mater. 2019, 492, 165606.
[43]
C. Antoniak,; H. C. Herper,; Y. N. Zhang,; A. Warland,; T. Kachel,; F. Stromberg,; B. Krumme,; C. Weis,; K. Fauth,; W. Keune, et al. Induced magnetism on silicon in Fe3Si quasi-Heusler compound. Phys. Rev. B 2012, 85, 214432.
[44]
M. Taupin,; J. P. Sanchez,; J. P. Brison,; D. Aoki,; G. Lapertot,; F. Wilhelm,; A. Rogalev, Microscopic magnetic properties of the ferromagnetic superconductor UCoGe reviewed by X-ray magnetic circular dichroism. Phys. Rev. B 2015, 92, 035124.
[45]
B. T. Thole,; P. Carra,; F. Sette,; G. van der Laan, X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943-1946.
[46]
P. Carra,; B. T. Thole,; M. Altarelli,; X. D. Wang, X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70, 694-697.
[47]
G. van der Laan,; B. T. Thole, X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions. Phys. Rev. B 1996, 53, 14458-14469.
[48]
F. Leuenberger,; A. Parge,; W. Felsch,; K. Fauth,; M. Hessler, GdN thin films: Bulk and local electronic and magnetic properties. Phys. Rev. B 2005, 72, 014427.
[49]
D. V. Averyanov,; O. E. Parfenov,; A. M. Tokmachev,; I. A. Karateev,; O. A. Kondratev,; A. N. Taldenkov,; M. S. Platunov,; F. Wilhelm,; A. Rogalev,; V. G. Storchak, Fine structure of metal-insulator transition in EuO resolved by doping engineering. Nanotechnology 2018, 29, 195706.
[50]
D. V. Averyanov,; A. M. Tokmachev,; O. E. Parfenov,; I. A. Karateev,; I. S. Sokolov,; A. N. Taldenkov,; M. S. Platunov,; F. Wilhelm,; A. Rogalev,; V. G. Storchak, Probing proximity effects in the ferromagnetic semiconductor EuO. Appl. Surf. Sci. 2019, 488, 107-114.
[51]
J. Bauer,; H. Pascher, Diluted magnetic IV-VI compounds. In Diluted Magnetic Semiconductors. M. Jain,, Ed.; World Scientific: Singapore, 1991; pp 339-407.
[52]
D. Torelli,; K. S. Thygesen,; T. Olsen, High throughput computational screening for 2D ferromagnetic materials: The critical role of anisotropy and local correlations. 2D Mater. 2019, 6, 045018.
[53]
K. Kim,; S. Y. Lim,; J. U. Lee,; S. Lee,; T. Y. Kim,; K. Park,; G. S. Jeon,; C. H. Park,; J. G. Park,; H. Cheong, Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345.
[54]
Z. Q. Liao,; Y. Standke,; J. Gluch,; P. Brázda,; J. Kopeček,; M. Klementová,; L. Palatinus,; E. Zschech, Cleaving silicene-terminated calcium disilicide in the transmission electron microscope. Nanotechnology 2020, 31, 095702.
[55]
S. Appelfeller,; M. Franz,; L. Freter,; C. Hassenstein,; H. F. Jirschik,; M. Dähne, Growth and characterization of Tb silicide nanostructures on Si(hhk) substrates. Phys. Rev. Mater. 2019, 3, 126002.
[56]
I. S Sokolov,; D. V. Averyanov,; O. E. Parfenov,; I. A. Karateev,; A. N. Taldenkov,; A. M. Tokmachev,; V. G. Storchak, 2D ferromagnetism in europium/graphene bilayers. Mater. Horiz. 2020, 7, 1372-1378.
[57]
A. Barla,; J. Nicolás,; D. Cocco,; S. M. Valvidares,; J. Herrero-Martín,; P. Gargiani,; J. Moldes,; C. Ruget,; E. Pellegrin,; S. Ferrer, Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source. J. Synchrotron Rad. 2016, 23, 1507-1517.
[58]
P. Ohresser,; E. Otero,; F. Choueikani,; K. Chen,; S. Stanescu,; F. Deschamps,; T. Moreno,; F. Polack,; B. Lagarde,; J. P. Daguerre, et al. DEIMOS: A beamline dedicated to dichroism measurements in the 350-2500 eV energy range. Rev. Sci. Instrum. 2014, 85, 013106.
Nano Research
Pages 3396-3402
Cite this article:
Averyanov DV, Sokolov IS, Platunov MS, et al. Competing magnetic states in silicene and germanene 2D ferromagnets. Nano Research, 2020, 13(12): 3396-3402. https://doi.org/10.1007/s12274-020-3027-y
Topics:
Metrics & Citations  
Article History
Copyright
Return