AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle

Fanchu Zeng1,2,§Huan Qin1,2,§( )Liming Liu1,2Haocai Chang1,2Qun Chen1,2Linghua Wu1,2Le Zhang1,2Zhujun Wu1,2Da Xing1,2( )
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China

§ Fanchu Zeng and Huan Qin contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Effective therapeutic strategies to precisely eradicate primary tumors with minimal side effects on normal tissue, inhibit metastases, and prevent tumor relapses, are the ultimate goals in the battle against cancer. We report a novel therapeutic strategy that combines adjuvant black phosphorus nanoparticle-based photoacoustic (PA) therapy with checkpoint-blockade immunotherapy. With the mitochondria targeting nanoparticle, PA therapy can achieve localized mechanical damage of mitochondria via PA cavitation and thus achieve precise eradication of the primary tumor. More importantly, PA therapy can generate tumor-associated antigens via the presence of the R848-containing nanoparticles as an adjuvant to promote strong antitumor immune responses. When combined with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4, the generated immunological responses will further promote the infiltrating CD8 and CD4 T-cells to increase the CD8/Foxp3 T-cell ratio to inhibit the growth of distant tumors beyond the direct impact range of the PA therapy. Furthermore, the number of memory T cells detected in the spleen is increased, and these cells inhibit tumor recurrence. This proposed strategy offers precise eradication of the primary tumor and can induce long-term tumor-specific immunity.

Electronic Supplementary Material

Download File(s)
12274_2020_3028_MOESM1_ESM.pdf (3 MB)

References

[1]
Q. Chen,; L. G. Xu,; C. Liang,; C. Wang,; R. Peng,; Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.
[2]
K. F. Chu,; D. E. Dupuy, Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199-208.
[3]
D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252-264.
[4]
Y. J. Liu,; P. Bhattarai,; Z. F. Dai,; X. Y. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053-2108.
[5]
J. Nam,; S. Son,; L. J. Ochyl,; R. Kuai,; A. Schwendeman,; J. J. Moon, Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.
[6]
J. R. Peng,; Y. Xiao,; W. T. Li,; Q. Yang,; L. W. Tan,; Y. P. Jia,; Y. Qu,; Z. Y. Qian, Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci. 2018, 5, 1700891.
[7]
Y. Cheng,; Y. Chang,; Y. L. Feng,; H. Jian,; Z. H. Tang,; H. Y. Zhang, Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed. 2018, 57, 246-251.
[8]
A. Ribas,; J. D. Wolchok, Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350-1355.
[9]
Q. Chen,; J. W. Chen,; Z. J. Yang,; J. Xu,; L. G. Xu,; C. Liang,; X. Han,; Z. Liu, Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, 1802228.
[10]
G. S. Song,; Y. Y. Chen,; C. Liang,; X. Yi,; J. J. Liu,; X. Q. Sun,; S. D. Shen,; K. Yang,; Z. Liu, Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 2016, 28, 7143-7148.
[11]
G. S. Song,; C. Liang,; X. Yi,; Q. Zhao,; L. Cheng,; K. Yang,; Z. Liu, Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716-2723.
[12]
J Nam,; S. Son,; K. S. Park,; W. P. Zou,; L. D. Shea,; J. J. Moon, Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019, 4, 398-414.
[13]
S. C. Formenti,; S. Demaria, Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst. 2013, 105, 256-265.
[14]
X. J. Song,; J. Xu,; C. Liang,; Y. Chao,; Q. T. Jin,; C. Wang,; M. W. Chen,; Z. Liu, Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 2018, 18, 6360-6368.
[15]
K. D. Lu,; C. B. He,; N. N. Guo,; C. Chan,; K. Y. Ni,; G. X. Lan,; H. D. Tang,; C. Pelizzari,; Y. X. Fu,; M. T. Spiotto, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[16]
Y. Z. Min,; K. C. Roche,; S. M. Tian,; M. J. Eblan,; K. P. McKinnon,; J. M. Caster,; S. J. Chai,; L. E. Herring,; L. Z. Zhang,; T. Zhang, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877-882.
[17]
W. Ngwa,; O. C. Irabor,; J. D. Schoenfeld,; J. Hesser,; S. Demaria,; S. C. Formenti, Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 2018, 18, 313-322.
[18]
X. X. Hao,; C. Y. Li,; Y. J. Zhang,; H. Z. Wang,; G. C. Chen,; M. Wang,; Q. B. Wang, Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1804437.
[19]
C. E. Ariyan,; M. S. Brady,; R. H. Siegelbaum,; J. Hu,; D. M. Bello,; J. Rand,; C. Fisher,; R. A. Lefkowitz,; K. S. Panageas,; M. Pulitzer, et al. Robust antitumor responses result from local chemotherapy and CTLA-4 blockade. Cancer Immunol. Res. 2018, 6, 189-200.
[20]
W. T. Song,; L. M. Shen,; Y. Wang,; Q. Liu,; T. J. Goodwin,; J. J. Li,; O. Dorosheva,; T. Z. Liu,; R. H. Liu,; L. Huang, Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 2018, 9, 2237.
[21]
W. J. Zhang,; X. L. Hu,; Q. Shen,; D. Xing, Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019, 10, 1704.
[22]
J. Xu,; L. G. Xu,; C. Y. Wang,; R. Yang,; Q. Zhuang,; X. Han,; Z. L. Dong,; W. W. Zhu,; R. Peng,; Z. Liu, Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 2017, 11, 4463-4474.
[23]
Y. Zhang,; F. M. Wang,; C. Q. Liu,; Z. Z. Wang,; L. H. Kang,; Y. Y. Huang,; K. Dong,; J. S. Ren,; X. G. Qu, Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651-661.
[24]
S. Goel,; C. A. Ferreira,; F. Chen,; P. A. Ellison,; C. M. Siamof,; T. E. Barnhart,; W. B. Cai, Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv. Mater. 2018, 30, 1704367.
[25]
F. Y. Li,; Y. Du,; J. N. Liu,; H. Sun,; J. Wang,; R. Q. Li,; D. Kim,; T. Hyeon,; D. S. Ling, Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater. 2018, 30, 1802808.
[26]
C. D. Ji,; Q. Gao,; X. H. Dong,; W. Y. Yin,; Z. J. Gu,; Z. H. Gan,; Y. L. Zhao,; M. Z. Yin, A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 11384-11388.
[27]
J. C. Li,; D. Cui,; J. G. Huang,; S. S. He,; Z. B. Yang,; Y. Zhang,; Y. Luo,; K. Y. Pu, Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 12680-12687.
[28]
X. S. Li,; N. Kwon,; T. Guo,; Z. Liu,; J. Yoon, Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 11522-11531.
[29]
M. J. O’Shaughnessy,; K. S. Murray,; S. P. La Rosa,; S. Budhu,; T. Merghoub,; A. Somma,; S. Monette,; K. Kim,; R. B. Corradi,; A. Scherz, et al. Systemic antitumor immunity by PD-1/PD-L1 inhibition is potentiated by vascular-targeted photodynamic therapy of primary tumors. Clin. Cancer Res. 2018, 24, 592-599.
[30]
G. X. Lan,; K. Y. Ni,; Z. W. Xu,; S. S. Veroneau,; Y. Song,; W. B. Lin, Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670-5673.
[31]
K. D. Lu,; C. B. He,; N. N. Guo,; C. Chan,; K. Y. Ni,; R. R. Weichselbaum,; W. B. Lin, Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502-12510.
[32]
G. B. Yang,; L. G. Xu,; J. Xu,; R. Zhang,; G. S. Song,; Y. Chao,; L. Z. Feng,; F. X. Han,; Z. L. Dong,; B. Li, et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 2018, 18, 2475-2484.
[33]
C. B. He,; X. P. Duan,; N. N. Guo,; C. Chan,; C. Poon,; R. R. Weichselbaum,; W. B. Lin, Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499.
[34]
Y. Y. Jiang,; J. C. Li,; X. Zhen,; C. Xie,; K. Y. Pu, Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: A comparative study. Adv. Mater. 2018, 30, 1705980.
[35]
Y. Y. Jiang,; P. K. Upputuri,; C. Xie,; Z. L. Zeng,; A. Sharma,; X. Zhen,; J. C. Li,; J. G. Huang,; M. Pramanik,; K. Y. Pu, Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.
[36]
J. B. Pan,; Y. Q. Wang,; C. Zhang,; X. Y. Wang,; H. Y. Wang,; J. J. Wang,; Y. Z. Yuan,; X. Wang,; X. J. Zhang,; C. S. Yu, et al. Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater. 2018, 30, 1704408.
[37]
C. Wang,; L. G. Xu,; C. Liang,; J. Xiang,; R. Peng,; Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154-8162.
[38]
L. M. Liu,; Q. Chen,; L. W. Wen,; C. Li,; H. Qin,; D. Xing, Photoacoustic therapy for precise eradication of glioblastoma with a tumor site blood-brain barrier permeability upregulating nanoparticle. Adv. Funct. Mater. 2019, 29, 1808601.
[39]
X. Wu,; J. Y. Chen,; A. Brech,; C. H. Fang,; J. F. Wang,; P. J. Helm,; Q. Peng, The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells. Biomaterials 2013, 34, 6157-6162.
[40]
H. Qin,; T. Zhou,; S. H. Yang,; D. Xing, Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue. Small 2015, 11, 2675-2686.
[41]
J. P. Zhong,; S. H. Yang,; L. W. Wen,; D. Xing, Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles. J. Control. Release 2016, 226, 77-87.
[42]
Z. X. Wang,; Y. M. Zhang,; B. Cao,; Z. Ji,; W. L. Luo,; S. D. Zhai,; D. D. Zhang,; W. P. Wang,; D. Xing,; X. L. Hu, Explosible nanocapsules excited by pulsed microwaves for efficient thermoacoustic-chemo combination therapy. Nanoscale 2019, 11, 1710-1719.
[43]
F. F. Zhou,; S. N. Wu,; Y. Yuan,; W. R. Chen,; D. Xing, Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small 2012, 8, 1543-1550.
[44]
Z. H. Sheng,; L. Song,; J. X. Zheng,; D. H. Hu,; M. He,; M. B. Zheng,; G. H. Gao,; P. Gong,; P. F. Zhang,; Y. F. Ma,; et al. Proteinassisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 2013, 34, 5236-5243.
[45]
J. J. Li,; A. Matlock,; Y. Z. Li,; Q. Chen,; C. Zuo,; L. Tian, High-speed in vitro intensity diffraction tomography. Adv. Photonics 2019, 1, 066004.
[46]
Y. T. Zhao,; L. P. Tong,; Z. B. Li,; N. Yang,; H. D. Fu,; L. Wu,; H. D. Cui,; W. H. Zhou,; J. H. Wang,; H. Y. Wang, et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem. Mater. 2017, 29, 7131-7139.
[47]
J. D. Shao,; H. H. Xie,; H. Huang,; Z. B. Li,; Z. B. Sun,; Y. H. Xu,; Q. L. Xiao,; X. F. Yu,; Y. T. Zhao,; H. Zhang, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.
[48]
W. S. Chen,; J. Ouyang,; H. Liu,; M. Chen,; K. Zeng,; J. P. Sheng,; Z. J. Liu,; Y. J. Han,; L. Q. Wang,; J. Li, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[49]
L. G. Jin,; P. Hu,; Y. Y. Wang,; L. J. Wu,; K. Qin,; H. X. Cheng,; S. H. Wang,; B. X. Pan,; H. B. Xin,; W. H. Zhang, et al. Fast-acting black-phosphorus-assisted depression therapy with low toxicity. Adv. Mater. 2020, 32, 1906050.
[50]
W. Tao,; X. B. Zhu,; X. H. Yu,; X. W. Zeng,; Q. L. Xiao,; X. D. Zhang,; X. Y. Ji,; X. S. Wang,; J. J. Shi,; H. Zhang, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.
[51]
R. Chen,; Q. Chen,; H. Qin,; D. Xing, A photoacoustic shockwave triggers the size shrinkage of nanoparticles to obviously improve tumor penetration and therapeutic efficacy. Nanoscale 2019, 11, 1423-1436.
[52]
S. D. Zhai,; X. L. Hu,; Z. Ji,; H. Qin,; Z. X. Wang,; Y. J. Hu,; D. Xing, Pulsed microwave-pumped drug-free thermoacoustic therapy by highly biocompatible and safe metabolic polyarginine probes. Nano Lett. 2019, 19, 1728-1735.
[53]
I. Mellman,; R. M. Steinman, Dendritic cells: Specialized and regulated antigen processing machines. Cell 2001, 106, 255-258.
[54]
H. Jonuleit,; E. Schmitt,; G. Schuler,; J. Knop,; A. H. Enk, Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 2000, 192, 1213-1222.
[55]
M. F. Sanmamed,; L. P. Chen, A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2018, 175, 313-326.
[56]
Y. D. Zang,; Y. C. Wei,; Y. J. Shi,; Q. Chen,; D. Xing, Chemo/ photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-gold nanoplatform. Small 2016, 12, 756-769.
[57]
S. J. O’Day,; O. Hamid,; W. J. Urba, Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): A novel strategy for the treatment of melanoma and other malignancies. Cancer 2007, 110, 2614-2627.
[58]
D. R. Leach,; M. F. Krummel,; J. P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734-1736.
[59]
L. M. Wakim,; J. Waithman,; N. van Rooijen,; W. R. Heath,; F. R. Carbone, Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 2008, 319, 198-202.
[60]
L. G. Guidotti,; T. Ishikawa,; M. V. Hobbs,; B. Matzke,; R. Schreiber,; F. V. Chisari, Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996, 4, 25-36.
[61]
P. Paglia,; C. Chiodoni,; M. Rodolfo,; M. P. Colombo, Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med. 1996, 183, 317-322.
[62]
R. D. Moses,; R. N. Pierson III,; H. J. Winn,; H. Auchincloss, Jr. Xenogeneic proliferation and lymphokine production are dependent on CD4+ helper T cells and self antigen-presenting cells in the mouse. J. Exp. Med. 1990, 172, 567-575.
[63]
D. L. Mueller,; S. Seiffert,; W. Fang,; T. W. Behrens, Differential regulation of bcl-2 and bcl-x by CD3, CD28, and the IL-2 receptor in cloned CD4+ helper T cells. A model for the long-term survival of memory cells. J. Immunol. 1996, 156, 1764-1771.
[64]
R. M. L. Buller,; K. L. Holmes,; A. Hügin,; T. N. Frederickson,; H. C. Morse III, Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature 1987, 328, 77-79.
[65]
U. Wille-Reece,; B. J. Flynn,; K. Loré,; R. A. Koup,; A. P. Miles,; A. Saul,; R. M. Kedl,; J. J. Mattapallil,; W. R. Weiss,; M. Roederer, et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J. Exp. Med. 2006, 203, 1249-1258.
[66]
J. J. Campbell,; K. E. Murphy,; E. J. Kunkel,; C. E. Brightling,; D. Soler,; Z. M. Shen,; J. Boisvert,; H. B. Greenberg,; M. A. Vierra,; S. B. Goodman, et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 2001, 166, 877-884.
[67]
R. A. Seder,; R. Ahmed, Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 2003, 4, 835-842.
[68]
S. M. Kaech,; E. J. Wherry,; R. Ahmed, Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002, 2, 251-262.
[69]
H. C. Chang,; Z. Z. Zou,; Q. H. Wang,; J. Li,; H. Jin,; Q. X. Yin,; D. Xing, Targeting and specific activation of antigen-presenting cells by endogenous antigen-loaded nanoparticles elicits tumor-specific immunity. Adv. Sci. 2020, 7, 1900069.
Nano Research
Pages 3403-3415
Cite this article:
Zeng F, Qin H, Liu L, et al. Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. Nano Research, 2020, 13(12): 3403-3415. https://doi.org/10.1007/s12274-020-3028-x
Topics:

904

Views

24

Crossref

N/A

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 23 June 2020
Revised: 28 July 2020
Accepted: 01 August 2020
Published: 29 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return