AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbon nanodots: A new precursor to achieve reactive nanoporous HOPG surfaces

Cristina Gutiérrez-Sánchez1( )Emiliano Martínez-Periñán1Carlos Busó-Rogero3Mónica Revenga-Parra1,2,3Félix Pariente1,2Encarnación Lorenzo1,2,3( )
Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
IMDEA-Nanoscience. Faraday 9, Campus Cantoblanco-UAM, Madrid 28049, Spain
Show Author Information

Graphical Abstract

Abstract

In the present work we develop an electrochemical assisted method to form nanopores on the surface of highly oriented pyrolytic graphite (HOPG), which was accomplished by a simple electrochemical route and a scalable nanomaterial, carbon nanodots, without applying high voltages, high temperatures or toxic reagents. HOPG electrodes are in a solution of N-enrich carbon nanodots in acidic media and the potential scans applied on HOPG lead to the formation of a spatially inhomogeneous porous surface. The diameter of the resulting nanopores can be tuned by controlling the number of electrochemical reduction cycles. The resulting nanoporous surfaces are characterized by atomic force microscopy, Raman spectroscopy, scanning electrochemical microscopy, electrochemical impedance spectroscopy and electrochemistry. These nanoporous HOPG showed high capacitance. Hence the potential of these surfaces to the development of energy storage devices is demonstrated.

Electronic Supplementary Material

Download File(s)
12274_2020_3030_MOESM1_ESM.pdf (1.6 MB)

References

[1]
R. Rajagopalan,; A. Ponnaiyan,; P. J. Mankidy,; A. W. Brooks,; B. Yi,; H. C. Foley, Molecular sieving platinum nanoparticlecatalysts kinetically frozen in nanoporous carbon. Chem. Commun. 2004, 2498-2499.
[2]
A. W. Hauser,; P. Schwerdtfeger, Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 2012, 3, 209-213.
[3]
T. H. Han,; Y. K. Huang,; A. T. L. Tan,; V. P. Dravid,; J. X. Huang, Steam etched porous graphene oxide network for chemical sensing. J. Am. Chem. Soc. 2011, 133, 15264-15267.
[4]
R. Soni,; S. N. Bhange,; S. Kurungot, A 3D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale 2019, 11, 7893-7902.
[5]
R. W. Mo,; F. Li,; X. Y. Tan,; P. C. Xu,; R. Tao,; G. R. Shen,; X. Lu,; F. Liu,; L. Shen,; B. Xu, et al. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat. Commun. 2019, 10, 1474.
[6]
S. Han,; D. Q. Wu,; S. Li,; F. Zhang,; X. L. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater.2014, 26, 849-864.
[7]
B. Khiari,; M. Jeguirim,; L. Limousy,; S. Bennici, Biomass derived chars for energy applications. Renew. Sustain. Energy Rev. 2019, 108, 253-273.
[8]
F. Hui,; B. Li,; P. A. He,; J. Hu,; Y. Z. Fang, Electrochemical fabrication of nanoporous polypyrrole film on HOPG using nanobubbles as templates. Electrochem. Commun. 2009, 11, 639-642.
[9]
M. Hugentobler,; S. Bonanni,; A. Sautier,; W. Harbich, Morphology and stability of Au nanoclusters in HOPG nanopits of well-defined depth. Eur. Phys. J. D 2011, 63, 215-220.
[10]
S. Stankovich,; D. A. Dikin,; G. H. B. Dommett,; K. M. Kohlhaas,; E. J. Zimney,; E. A. Stach,; R. D. Piner,; S. B. T. Nguyen,; R. S. Ruoff, Graphene-based composite materials. Nature 2006, 442, 282-286.
[11]
D. Jana,; A. B. Vasista,; H. Jog,; R. P. N. Tripathi,; M. Allen,; J. Allen,; G. V. Pavan Kumar, V-shaped active plasmonic meta-polymers. Nanoscale 2019, 11, 3799-3803.
[12]
A. L. Shen,; Y. Q. Zou,; Q. Wang,; R. A. W. Dryfe,; X. B. Huang,; S. Dou,; L. M. Dai,; S. Y. Wang, Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804-10808.
[13]
N. Kurra,; G. Prakash,; S. Basavaraja,; T. S. Fisher,; G. U. Kulkarni,; R. G. Reifenberger, Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 2011, 22, 245302.
[14]
B. P. Corgier,; D. Bélanger, Electrochemical surface nanopatterning using microspheres and aryldiazonium. Langmuir 2010, 26, 5991-5997.
[15]
L. Cui,; Y. H. Xu,; B. P. Liu,; W. R. Yang,; Z. Q. Song,; J. Q. Liu, Well-controlled preparation of evenly distributed nanoporous HOPG surface via diazonium salt assisted electrochemical etching process. Carbon 2016, 102, 419-425.
[16]
T. H. Phan,; H. Van Gorp,; Z. Li,; T. M. Trung Huynh,; Y. Fujita,; L. Verstraete,; S. Eyley,; W. Thielemans,; H. Uji-i,; B. E. Hirsch, et al. Graphite and graphene fairy circles: A bottom-up approach for the formation of nanocorrals. ACS Nano 2019, 13, 5559-5571.
[17]
X. Y. Xu,; R. Ray,; Y. L. Gu,; H. J. Ploehn,; L. Gearheart,; K. Raker,; W. A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737.
[18]
F. Rigodanza,; L. Đorđević,; F. Arcudi,; M. Prato, Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew. Chem., Int. Ed. 2018, 57, 5062-5067.
[19]
C. Gutiérrez-Sánchez,; M. Mediavilla,; T. Guerrero-Esteban,; M. Revenga-Parra,; F. Pariente,; E. Lorenzo, Direct covalent immobilization of new nitrogen-doped carbon nanodots by electrografting for sensing applications. Carbon 2020, 159, 303-310.
[20]
J. M. Abad,; Á. Y. Tesio,; F. Pariente,; E. Lorenzo, Patterning gold nanoparticle using scanning electrochemical microscopy. J. Phys. Chem. C 2013, 117, 22087-22093.
[21]
J. M. Abad,; A. Y. Tesio,; E. Martínez-Periñán,; F. Pariente,; E. Lorenzo, Imaging resolution of biocatalytic activity using nanoscale scanning electrochemical microscopy. Nano Res. 2018, 11, 4232-4244.
[22]
Y. J. Wang,; J. G. Limon-Petersen,; R. G. Compton, Measurement of the diffusion coefficients of [Ru(NH3)6]3+ and [Ru(NH3)6]2+ in aqueous solution using microelectrode double potential step chronoamperometry. J. Electroanal. Chem. 2011, 652, 13-17.
[23]
N. Nioradze,; R. Chen,; J. Kim,; M. Shen,; P. Santhosh,; S. Amemiya, Origins of nanoscale damage to glass-sealed platinum electrodes with submicrometer and nanometer size. Anal. Chem. 2013, 85, 6198-6202.
[24]
W. J. Yuan,; Y. Zhou,; Y. R. Li,; C. Li,; H. L. Peng,; J. Zhang,; Z. F. Liu,; L. M. Dai,; G. Q. Shi, The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248.
[25]
J. V. Zoval,; J. Lee,; S. Gorer,; R. M. Penner, Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J. Phys. Chem. B 1998, 102, 1166-1175.
[26]
J. Lu,; J. X. Yang,; J. Z. Wang,; A. Lim,; S. Wang,; K. P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367-2375.
[27]
K. Jurewicz,; E. Frackowiak,; F. Béguin, Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A 2004, 78, 981-987.
[28]
G. M. Morales,; P. Schifani,; G. Ellis,; C. Ballesteros,; G. Martínez,; C. Barbero,; H. J. Salavagione, High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon 2011, 49, 2809-2816.
[29]
R. S. Robinson, Morphology and electrochemical effects of defects on highly oriented pyrolytic graphite. J. Electrochem. Soc. 1991, 138, 2412.
[30]
M. T. McDermott,; K. Kneten,; R. L. McCreery, Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects. J. Phys. Chem. 1992, 96, 3124-3130.
[31]
T. Sun,; Y. Yu,; B. J. Zacher,; M. V. Mirkin, Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14120-14123.
[32]
L. M. Malard,; M. A. Pimenta,; G. Dresselhaus,; M. S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87.
[33]
A. P. Sokolov,; U. Buchenau,; W. Steffen,; B. Frick,; A. Wischnewski, Comparison of Raman- and neutron-scattering data for glass-forming systems. Phys. Rev. B 1995, 52, R9815-R9818.
[34]
J. W. Suk,; A. Kitt,; C. W. Magnuson,; Y. F. Hao,; S. Ahmed,; J. An,; A. K. Swan,; B. B. Goldberg,; R. S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916-6924.
[35]
P. Solís-Fernández,; J. I. Paredes,; A. Cosío,; A. Martínez-Alonso,; J. M. D. Tascón, A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. J. Colloid Interface Sci. 2010, 344, 451-459.
Nano Research
Pages 3425-3432
Cite this article:
Gutiérrez-Sánchez C, Martínez-Periñán E, Busó-Rogero C, et al. Carbon nanodots: A new precursor to achieve reactive nanoporous HOPG surfaces. Nano Research, 2020, 13(12): 3425-3432. https://doi.org/10.1007/s12274-020-3030-3
Topics:

920

Views

3

Crossref

N/A

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 18 June 2020
Revised: 27 July 2020
Accepted: 02 August 2020
Published: 29 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return