AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Opto-valleytronics in the 2D van der Waals heterostructure

Abdullah Rasmita1Wei-bo Gao1,2( )
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
Show Author Information

Graphical Abstract

Abstract

The development of information processing devices with minimum carbon emission is crucial in this information age. One of the approaches to tackle this challenge is by using valleys (local extremum points in the momentum space) to encode the information instead of charges. The valley information in some material such as monolayer transition metal dichalcogenide (TMD) can be controlled by using circularly polarized light. This opens a new field called opto-valleytronics. In this article, we first review the valley physics in monolayer TMD and two-dimensional (2D) heterostructure composed of monolayer TMD and other materials. Such 2D heterostructure has been shown to exhibit interesting phenomena such as interlayer exciton, magnetic proximity effect, and spin-orbit proximity effect, which is beneficial for opto-valleytronics application. We then review some of the optical valley control methods that have been used in the monolayer TMD and the 2D heterostructure. Finally, a summary and outlook of the 2D heterostructure opto-valleytronics are given.

References

[1]
D. Xiao,; W. Yao,; Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.
[2]
K. F. Mak,; D. Xiao,; J. Shan, Light-valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451-460.
[3]
S. A. Vitale,; D. Nezich,; J. O. Varghese,; P. Kim,; N. Gedik,; P. Jarillo- Herrero,; D. Xiao,; M. Rothschild, Valleytronics: Opportunities, challenges, and paths forward. Small 2018, 14, 1801483.
[4]
G. Sallen,; L. Bouet,; X. Marie,; G. Wang,; C. R. Zhu,; W. P. Han,; Y. Lu,; P. H. Tan,; T. Amand,; B. L. Liu, et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 2012, 86, 081301.
[5]
K. F. Mak,; K. L. He,; J. Shan,; T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.
[6]
T. Cao,; G. Wang,; W.P. Han,; H. Q. Ye,; C. R. Zhu,; J. R. Shi,; Q. Niu,; P. H. Tan,; E. G. Wang,; B. L. Liu, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
[7]
D. Xiao,; G. B. Liu,; W. X. Feng,; X. D. Xu,; W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.
[8]
H. L. Zeng,; J. F. Dai,; W. Yao,; D. Xiao,; X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.
[9]
P. Rivera,; K. L. Seyler,; H. Y. Yu,; J. R. Schaibley,; J. Q. Yan,; D. G. Mandrus,; W. Yao,; X. D. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688-691.
[10]
Z. L. Ye,; D. Z. Sun,; T. F. Heinz, Optical manipulation of valley pseudospin. Nat. Phys. 2017, 13, 26-29.
[11]
F. Langer,; C. P. Schmid,; S. Schlauderer,; M. Gmitra,; J. Fabian,; P. Nagler,; C. Schüller,; T. Korn,; P. G. Hawkins,; J. T. Steiner, et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 2018, 557, 76-80.
[12]
Y. D. Liu,; H. L. Fang,; A. Rasmita,; Y. Zhou,; J. T. Li,; T. Yu,; Q. H. Xiong,; N. Zheludev,; J. Liu,; W. B. Gao, Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 2019, 5, eaav4506.
[13]
S. F. Wu,; S. Buckley,; J. R. Schaibley,; L. F. Feng,; J. Q. Yan,; D. G. Mandrus,; F. Hatami,; W. Yao,; J. Vučković,; A. Majumdar, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69-72.
[14]
Y. Ye,; Z. J. Wong,; X. F. Lu,; X. J. Ni,; H. Y. Zhu,; X. H. Chen,; Y. Wang,; X. Zhang, Monolayer excitonic laser. Nat. Photonics 2015, 9, 733-737.
[15]
Y. Z. Li,; J. X. Zhang,; D. D. Huang,; H. Sun,; F. Fan,; J. B. Feng,; Z. Wang,; C. Z. Ning, Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987-992.
[16]
J. Z. Shang,; C. X. Cong,; Z. L. Wang,; N. Peimyoo,; L. S. Wu,; C. J. Zou,; Y. Chen,; X. Y. Chin,; J. P. Wang,; C. Soci, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.
[17]
E. Y. Paik,; L. Zhang,; G. W. Burg,; R. Gogna,; E. Tutuc,; H. Deng, Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80-84.
[18]
N. Lundt,; P. Nagler,; A. Nalitov,; S. Klembt,; M. Wurdack,; S. Stoll,; T. H. Harder,; S. Betzold,; V. Baumann,; A. V. Kavokin, et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon Trion-polaritons with a MoSe2 monolayer. 2D Mater. 2017, 4, 025096.
[19]
Z. Sun,; J. Gu,; A. Ghazaryan,; Z. Shotan,; C. R. Considine,; M. Dollar,; B. Chakraborty,; X. Z. Liu,; P. Ghaemi,; S. Kéna-Cohen, et al. Optical control of room-temperature valley polaritons. Nat. Photonics 2017, 11, 491-496.
[20]
S. Dufferwiel,; T. P. Lyons,; D. D. Solnyshkov,; A. A. P. Trichet,; F. Withers,; S. Schwarz,; G. Malpuech,; J. M. Smith,; K. S. Novoselov,; M. S. Skolnick, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 2017, 11, 497-501.
[21]
F. R. Hu,; Z. Fei, Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.
[22]
Y. J. Chen,; J. D. Cain,; T. K. Stanev,; V. P. Dravid,; N. P. Stern, Valley- polarized exciton-polaritons in a monolayer semiconductor. Nat. Photonics 2017, 11, 431-435.
[23]
S. Dufferwiel,; T. P. Lyons,; D. D. Solnyshkov,; A. A. P. Trichet,; A. Catanzaro,; F. Withers,; G. Malpuech,; J. M. Smith,; K. S. Novoselov,; M. S. Skolnick, et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 2018, 9, 4797.
[24]
Y. J. Zhang,; T. Oka,; R. Suzuki,; J. T. Ye,; Y. Iwasa, Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725-728.
[25]
G. Scuri,; T. I. Andersen,; Y. Zhou,; D. S. Wild,; J. Sung,; R. J. Gelly,; D. Bérubé,; H. Heo,; L. B. Shao,; A. Y. Joe, et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 2020, 124, 217403.
[26]
C. Y. Jiang,; W. G. Xu,; A. Rasmita,; Z. M. Huang,; K. Li,; Q. H. Xiong,; W. B. Gao, Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 2018, 9, 753.
[27]
P. Nagler,; M. V. Ballottin,; A. A. Mitioglu,; F. Mooshammer,; N. Paradiso,; C. Strunk,; R. Huber,; A. Chernikov,; P. C. M. Christianen,; C. Schüller, et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.
[28]
A. Srivastava,; M. Sidler,; A. V. Allain,; D. S. Lembke,; A. Kis,; A. Imamoğlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141-147.
[29]
G. Aivazian,; Z. R. Gong,; A. M. Jones,; R. L. Chu,; J. Yan,; D. G. Mandrus,; C. W. Zhang,; D. Cobden,; W. Yao,; X. Xu, Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148-152.
[30]
D. MacNeill,; C. Heikes,; K. F. Mak,; Z. Anderson,; A. Kormányos,; V. Zólyomi,; J. Park,; D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.
[31]
Y. L. Li,; J. Ludwig,; T. Low,; A. Chernikov,; X. Cui,; G. Arefe,; Y. D. Kim,; A. M. Van Der Zande,; A. Rigosi,; H. M. Hill, et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 2014, 113, 266804.
[32]
Y. Q. Wang,; L. J. Deng,; Q. L. Wei,; Y. Wan,; Z. Liu,; X. Lu,; Y. Li,; L. Bi,; L. Zhang,; H. P. Lu, et al. Spin-valley locking effect in defect states of monolayer MoS2. Nano Lett. 2020, 20, 2129-2136.
[33]
Q. Li,; X. X. Zhao,; L. J. Deng,; Z. T. Shi,; S. Liu,; Q. L. Wei,; L. B. Zhang,; Y. C. Cheng,; L. Zhang,; H. P. Lu, et al. Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636-4645.
[34]
J. Lee,; Z. F. Wang,; H. C. Xie,; K. F. Mak,; J. Shan, Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 2017, 16, 887-891.
[35]
A. K. Geim,; I. V. Grigorieva, van der Waals heterostructures. Nature 2013, 499, 419-425.
[36]
S. J. Haigh,; A. Gholinia,; R. Jalil,; S. Romani,; L. Britnell,; D. C. Elias,; K. S. Novoselov,; L. A. Ponomarenko,; A. K. Geim,; R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.
[37]
I. Žutić,; A. Matos-Abiague,; B. Scharf,; H. Dery,; K. Belashchenko, Proximitized materials. Mater. Today 2019, 22, 85-107.
[38]
P. Rivera,; J. R. Schaibley,; A. M. Jones,; J. S. Ross,; S. F. Wu,; G. Aivazian,; P. Klement,; K. Seyler,; G. Clark,; N. J. Ghimire, et al. Observation of long-lived interlayer excitons in monolayer MoSe2- WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.
[39]
X. D. Xu,; W. Yao,; D. Xiao,; T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.
[40]
Y. P. Liu,; Y. J. Gao,; S. Y. Zhang,; J. He,; J. Yu,; Z. W. Liu, Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695-2711.
[41]
J. R. Schaibley,; H. Y. Yu,; G. Clark,; P. Rivera,; J. S. Ross,; K. L. Seyler,; W. Yao,; X. D. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[42]
S. Lebègue,; O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.
[43]
T. S. Li,; G. Galli, Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192-16196.
[44]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[45]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[46]
S. Tongay,; J. Zhou,; C. Ataca,; K. Lo,; T. S. Matthews,; J. B. Li,; J. C. Grossman,; J. Q. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576-5580.
[47]
P. V. Nguyen,; N. C. Teutsch,; N. P. Wilson,; J. Kahn,; X. Xia,; A. J. Graham,; V. Kandyba,; A. Giampietri,; A. Barinov,; G. C. Constantinescu, et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 2019, 572, 220-223.
[48]
W. C. Jin,; P. C. Yeh,; N. Zaki,; D. T. Zhang,; J. T. Sadowski,; A. Al- Mahboob,; A. M. Van Der Zande,; D. A. Chenet,; J. I. Dadap,; I. P. Herman, et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.
[49]
G. B. Liu,; W. Y. Shan,; Y. G. Yao,; W. Yao,; D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433.
[50]
G. B. Liu,; D. Xiao,; Y. G. Yao,; X. D. Xu,; W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643-2663.
[51]
A. Kormányos,; V. Zólyomi,; N. D. Drummond,; G. Burkard, Spin- orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.
[52]
K. F. Mak,; K. L. He,; C. Lee,; G. H. Lee,; J. Hone,; T. F. Heinz,; J. Shan, Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[53]
G. Sundaram,; Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 1999, 59, 14915-14925.
[54]
D. Xiao,; M. C. Chang,; Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959-2007.
[55]
H. Y. Yu,; G. B. Liu,; W. Yao, Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 2018, 5, 035021.
[56]
M. Onga,; Y. J. Zhang,; T. Ideue,; Y. Iwasa, Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193-1197.
[57]
K. F. Mak,; K. L. McGill,; J. Park,; P. L. McEuen, The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.
[58]
S. Y. Xu,; Q. Ma,; H. T. Shen,; V. Fatemi,; S. F. Wu,; T. R. Chang,; G. Q. Chang,; A. M. M. Valdivia,; C. K. Chan,; Q. D. Gibson, et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018, 14, 900-906.
[59]
H. Y. Yu,; Y. Wu,; G. B. Liu,; X. D. Xu,; W. Yao, Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D Crystals. Phys. Rev. Lett. 2014, 113, 156603.
[60]
E. J. Sie,; J. W. McIver,; Y. H. Lee,; L. Fu,; J. Kong,; N. Gedik, Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290-294.
[61]
J. Kim,; X. P. Hong,; C. H. Jin,; S. F. Shi,; C. Y. S. Chang,; M. H. Chiu,; L. J. Li,; F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 2014, 346, 1205-1208.
[62]
E. J. Sie,; C. H. Lui,; Y. H. Lee,; L. Fu,; J. Kong,; N. Gedik, Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 2017, 355, 1066-1069.
[63]
G. Kioseoglou,; A. T. Hanbicki,; M. Currie,; A. L. Friedman,; B. T. Jonker, Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 2016, 6, 25041.
[64]
B. R. Carvalho,; Y. X. Wang,; S. Mignuzzi,; D. Roy,; M. Terrones,; C. Fantini,; V. H. Crespi,; L. M. Malard,; M. A. Pimenta, Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 2017, 8, 14670.
[65]
T. Yu,; M. W. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 2014, 89, 205303.
[66]
M. M. Glazov,; T. Amand,; X. Marie,; D. Lagarde,; L. Bouet,; B. Urbaszek, Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 2014, 89, 201302.
[67]
C. R. Zhu,; K. Zhang,; M. Glazov,; B. Urbaszek,; T. Amand,; Z. W. Ji,; B. L. Liu,; X. Marie, Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302.
[68]
T. F. Yan,; X. F. Qiao,; P. H. Tan,; X. H. Zhang, Valley depolarization in monolayer WSe2. Sci. Rep. 2015, 5, 15625.
[69]
L. Guo,; M. Wu,; T. Cao,; D. M. Monahan,; Y. H. Lee,; S. G. Louie,; G. R. Fleming, Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys. 2019, 15, 228-232.
[70]
R. Schmidt,; G. Berghäuser,; R. Schneider,; M. Selig,; P. Tonndorf,; E. Malić,; A. Knorr,; S. Michaelis de Vasconcellos,; R. Bratschitsch, Ultrafast Coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett. 2016, 16, 2945-2950.
[71]
R. Schmidt,; A. Arora,; G. Plechinger,; P. Nagler,; A. Granados del Águila,; M. V. Ballottin,; P. C. M. Christianen,; S. Michaelis de Vasconcellos,; C. Schüller,; T. Korn, et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett. 2016, 117, 077402.
[72]
G. Wang,; X. Marie,; B. L. Liu,; T. Amand,; C. Robert,; F. Cadiz,; P. Renucci,; B. Urbaszek, Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 2016, 117, 187401.
[73]
K. Hao,; G. Moody,; F. C. Wu,; C. K. Dass,; L. X. Xu,; C. H. Chen,; L. Y. Sun,; M. Y. Li,; L. J. Li,; A. H. MacDonald, et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 2016, 12, 677-682.
[74]
Y. F. Liang,; S. T. Huang,; R. Soklaski,; L. Yang, Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides. Appl. Phys.cs Lett. 2013, 103, 042106.
[75]
V. O. Özçelik,; J. G. Azadani,; C. Yang,; S. J. Koester,; T. Low, Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.
[76]
J. Kang,; S. Tongay,; J. Zhou,; J. B. Li,; J. Q. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.
[77]
N. R. Wilson,; P. V. Nguyen,; K. Seyler,; P. Rivera,; A. J. Marsden,; Z. P. L. Laker,; G. C. Constantinescu,; V. Kandyba,; A. Barinov,; N. D. M. Hine, et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.
[78]
S. Latini,; K. T. Winther,; T. Olsen,; K. S. Thygesen, Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938-945.
[79]
F. Wang,; J. Y. Wang,; S. Guo,; J. Z. Zhang,; Z. G. Hu,; J. H. Chu, Tuning coupling behavior of stacked heterostructures based on MoS2, WS2, and WSe2. Sci. Rep. 2017, 7, 44712.
[80]
J. Kang,; J. B. Li,; S. S. Li,; J. B. Xia,; L. W. Wang, Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485-5490.
[81]
B. Miller,; A. Steinhoff,; B. Pano,; J. Klein,; F. Jahnke,; A. Holleitner,; U. Wurstbauer, Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229-5237.
[82]
J. A. Seamons,; C. P. Morath,; J. L. Reno,; M. P. Lilly, Coulomb drag in the exciton regime in electron-hole bilayers. Phys. Rev. Lett. 2009, 102, 026804.
[83]
P. Rivera,; H. Y. Yu,; K. L. Seyler,; N. P. Wilson,; W. Yao,; X. D. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004-1015.
[84]
F. Liu,; W. J. Wu,; Y. S. Bai,; S. H. Chae,; Q. Y. Li,; J. Wang,; J. Hone,; X. Y. Zhu, Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903-906.
[85]
O. Karni,; E. Barré,; S. C. Lau,; R. Gillen,; E. Y. Ma,; B. Kim,; K. Watanabe,; T. Taniguchi,; J. Maultzsch,; K. Barmak, et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 2019, 123, 247402.
[86]
C. D. Zhang,; C. P. Chuu,; X. B. Ren,; M. Y. Li,; L. J. Li,; C. H. Jin,; M. Y. Chou,; C. K. Shih, Interlayer couplings, Moirr patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.
[87]
H. Y. Yu,; G. B. Liu,; J. J. Tang,; X. D. Xu,; W. Yao, Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.
[88]
F. C. Wu,; T. Lovorn,; E. Tutuc,; A. H. MacDonald, Hubbard model physics in transition metal dichalcogenide Moira bands. Phys. Rev. Lett. 2018, 121, 026402.
[89]
F. C. Wu,; T. Lovorn,; E. Tutuc,; I. Martin,; A. H. MacDonald, Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 2019, 122, 086402.
[90]
E. C. Regan,; D. Q. Wang,; C. H. Jin,; M. I. Bakti Utama,; B. N. Gao,; X. Wei,; S. H. Zhao,; W. Y. Zhao,; Z. C. Zhang,; K. Yumigeta, et al. Mott and generalized Wigner crystal states in WSe2/WS2 Moir superlattices. Nature 2020, 579, 359-363.
[91]
Y. H. Tang,; L. Z. Li,; T. X. Li,; Y. Xu,; S. Liu,; K. Barmak,; K. Watanabe,; T. Taniguchi,; A. H. MacDonald,; J. Shan, et al. Simulation of Hubbard model physics in WSe2/WS2 Moirl superlattices. Nature 2020, 579, 353-358.
[92]
Y. Shimazaki,; I. Schwartz,; K. Watanabe,; T. Taniguchi,; M. Kroner,; A. Imamoğlu, Strongly correlated electrons and hybrid excitons in a Moirn heterostructure. Nature 2020, 580, 472-477.
[93]
K. L. Seyler,; P. Rivera,; H. Y. Yu,; N. P. Wilson,; E. L. Ray,; D. G. Mandrus,; J. Q. Yan,; W. Yao,; X. D. Xu, Signatures of Moira- trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66-70.
[94]
E. M. Alexeev,; D. A. Ruiz-Tijerina,; M. Danovich,; M. J. Hamer,; D. J. Terry,; P. K. Nayak,; S. Ahn,; S. Pak,; J. Lee,; J. I. Sohn, et al. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81-86.
[95]
A. Ciarrocchi,; D. Unuchek,; A. Avsar,; K. Watanabe,; T. Taniguchi,; A. Kis, Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 2019, 13, 131-136.
[96]
C. H. Jin,; E. C. Regan,; A. M. Yan,; M. Iqbal Bakti Utama,; D. Q. Wang,; S. H. Zhao,; Y. Qin,; S. J. Yang,; Z. R. Zheng,; S. Y. Shi, et al. Observation of Moirr excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76-80.
[97]
C. H. Jin,; E. C. Regan,; D. Q. Wang,; M. Iqbal Bakti Utama,; C. S. Yang,; J. Cain,; Y. Qin,; Y. X. Shen,; Z. R. Zheng,; K. Watanabe, et al. Identification of spin, valley and Moire quasi-angular momentum of interlayer excitons. Nat. Phys. 2019, 15, 1140-1144.
[98]
K. Tran,; G. Moody,; F. C. Wu,; X. B. Lu,; J. Choi,; K. Kim,; A. Rai,; D. A. Sanchez,; J. M. Quan,; A. Singh, et al. Evidence for Moire excitons in van der Waals heterostructures. Nature 2019, 567, 71-75.
[99]
F. C. Wu,; T. Lovorn,; A. H. MacDonald, Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.
[100]
N. Zhang,; A. Surrente,; M. Baranowski,; D. K. Maude,; P. Gant,; A. Castellanos-Gomez,; P. Plochocka, Moiré intralayer excitons in a MoSe2/MoS2 Heterostructure. Nano Lett. 2018, 18, 7651-7657.
[101]
F. C. Wu,; T. Lovorn,; A. H. MacDonald, Topological exciton bands in Moirl heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.
[102]
Y. Wang,; Z. Wang,; W. Yao,; G. B. Liu,; H. Y. Yu, Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 2017, 95, 115429.
[103]
T. M. Wang,; S. N. Miao,; Z. P. Li,; Y. Z. Meng,; Z. G. Lu,; Z. Lian,; M. Blei,; T. Taniguchi,; K. Watanabe,; S. Tongay, et al. Giant valley- Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 2020, 20, 694-700.
[104]
L. Zhang,; R. Gogna,; G. W. Burg,; J. Horng,; E. Paik,; Y. H. Chou,; K. Kim,; E. Tutuc,; H. Deng, Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 2019, 100, 041402.
[105]
G. Wang,; A. Chernikov,; M. M. Glazov,; T. F. Heinz,; X. Marie,; T. Amand,; B. Urbaszek, Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.
[106]
M. Kulig,; J. Zipfel,; P. Nagler,; S. Blanter,; C. Schüller,; T. Korn,; N. Paradiso,; M. M. Glazov,; A. Chernikov, Exciton diffusion and Halo effects in monolayer semiconductors. Phys. Rev. Lett. 2018, 120, 207401.
[107]
D. Unuchek,; A. Ciarrocchi,; A. Avsar,; K. Watanabe,; T. Taniguchi,; A. Kis, Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018, 560, 340-344.
[108]
D. Unuchek,; A. Ciarrocchi,; A. Avsar,; Z. Sun,; K. Watanabe,; T. Taniguchi,; A. Kis, Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 2019, 14, 1104-1109.
[109]
L. A. Jauregui,; A. Y. Joe,; K. Pistunova,; D. S. Wild,; A. A. High,; Y. Zhou,; G. Scuri,; K. De Greve,; A. Sushko,; C. H. Yu, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019, 366, 870-875.
[110]
Z. M. Huang,; Y. D. Liu,; K. Dini,; Q. H. Tan,; Z. J. Liu,; H. L. Fang,; J. Liu,; T. Liew,; W. B. Gao, Robust room temperature valley Hall effect of interlayer excitons. Nano Lett. 2020, 20, 1345-1351.
[111]
Y. D. Liu,; K. S. Novoselov,; W. B. Gao, Electrically controllable router of interlayer excitons. 2019, arXiv:1911.12061. arXiv.org e-Print archive. https://arxiv.org/abs/1911.12061 (accessed May 11, 2020).
[112]
W. J. Li,; X. Lu,; S. Dubey,; L. Devenica,; A. Srivastava, Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 2020, 19, 624-629.
[113]
C. Y. Jiang,; A. Rasmita,; W. G. Xu,; A. Imamoğlu,; Q. H. Xiong,; W. B. Gao, Optical spin pumping induced pseudomagnetic field in two-dimensional heterostructures. Phys. Rev. B 2018, 98, 241410.
[114]
J. Zhang,; L. J. Du,; S. Feng,; R. W. Zhang,; B. C. Cao,; C. J. Zou,; Y. Chen,; M. Z. Liao,; B. L. Zhang,; S. A. Yang, et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226.
[115]
C. H. Jin,; E. Y. Ma,; O. Karni,; E. C. Regan,; F. Wang,; T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994-1003.
[116]
J. R. Schaibley,; P. Rivera,; H. Y. Yu,; K. L. Seyler,; J. Q. Yan,; D. G. Mandrus,; T. Taniguchi,; K. Watanabe,; W. Yao,; X. D. Xu, Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 2016, 7, 13747.
[117]
X. P. Hong,; J. Kim,; S. F. Shi,; Y. Zhang,; C. H. Jin,; Y. H. Sun,; S. Tongay,; J. Q. Wu,; Y. F. Zhang,; F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.
[118]
X. X. Zhang,; Y. M. You,; S. Y. F. Zhao,; T. F. Heinz, Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 257403.
[119]
T. Smoleński,; M. Goryca,; M. Koperski,; C. Faugeras,; T. Kazimierczuk,; A. Bogucki,; K. Nogajewski,; P. Kossacki,; M. Potemski, Tuning valley polarization in a WSe2 monolayer with a tiny magnetic field. Phys. Rev. X 2016, 6, 021024.
[120]
H. M. Zhu,; J. Wang,; Z. Z. Gong,; Y. D. Kim,; J. Hone,; X. Y. Zhu, Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 2017, 17, 3591-3598.
[121]
Z. H. Ji,; H. Hong,; J. Zhang,; Q. Zhang,; W. Huang,; T. Cao,; R. X. Qiao,; C. Liu,; J. Liang,; C. H. Jin, et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020-12026.
[122]
K. Shayan,; N. Liu,; A. Cupo,; Y. C. Ma,; Y. Luo,; V. Meunier,; S. Strauf, Magnetic proximity coupling of quantum emitters in WSe2 to van der Waals ferromagnets. Nano Lett. 2019, 19, 7301-7308.
[123]
T. Norden,; C. Zhao,; P. Y. Zhang,; R. Sabirianov,; A. Petrou,; H. Zeng, Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun. 2019, 10, 4163.
[124]
D. Zhong,; K. L. Seyler,; X. Y. Linpeng,; R. Cheng,; N. Sivadas,; B. Huang,; E. Schmidgall,; T. Taniguchi,; K. Watanabe,; M. A. McGuire, et al. van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 2017, 3, e1603113.
[125]
B. Scharf,; G. F. Xu,; A. Matos-Abiague,; I. Žutić, Magnetic proximity effects in transition-metal dichalcogenides: Converting excitons. Phys. Rev. Lett. 2017, 119, 127403.
[126]
C. Zhao,; T. Norden,; P. Y. Zhang,; P. Q. Zhao,; Y. C. Cheng,; F. Sun,; J. P. Parry,; P. Taheri,; J. Q. Wang,; Y. H. Yang, et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 2017, 12, 757-762.
[127]
Q. Y. Zhang,; S. A. Yang,; W. B. Mi,; Y. C. Cheng,; U. Schwingenschlögl, Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv. Mater. 2016, 28, 959-966.
[128]
T. P. Lyons,; D. Gillard,; A. Molina-Sánchez,; A. Misra,; F. Withers,; P. S. Keatley,; A. Kozikov,; T. Taniguchi,; K. Watanabe,; K. S. Novoselov, et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. 2020, arXiv:2004.04073. arXiv.org e-Print archive. https://arxiv.org/abs/2004.04073 (accessed Apr 29, 2020).
[129]
L. J. Du,; Q. Zhang,; B. C. Gong,; M. Z. Liao,; J. Q. Zhu,; H. Yu,; R. He,; K. Liu,; R. Yang,; D. X. Shi, et al. Robust spin-valley polarization in commensurate MoS2/graphene heterostructures. Phys. Rev. B 2018, 97, 115445.
[130]
E. Lorchat,; S. Azzini,; T. Chervy,; T. Taniguchi,; K. Watanabe,; T. W. Ebbesen,; C. Genet,; S. Berciaud, Room-temperature valley polarization and coherence in transition metal dichalcogenide- graphene van der Waals Heterostructures. ACS Photonics 2018, 5, 5047-5054.
[131]
M. Förg,; L. Colombier,; R. K. Patel,; J. Lindlau,; A. D. Mohite,; H. Yamaguchi,; M. M. Glazov,; D. Hunger,; A. Högele, Cavity- control of interlayer excitons in van der Waals heterostructures. Nat. Commun. 2019, 10, 3697.
[132]
A. R. P. Montblanch,; D. M. Kara,; I. Paradisanos,; C. M. Purser,; M. S. G. Feuer,; E. M. Alexeev,; L. Stefan,; Y. Qin,; M. Blei,; G. Wang, et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. 2020, arXiv:2005.02416. arXiv.org e-Print archive. https://arxiv.org/abs/2005.02416 (accessed May 11, 2020).
[133]
J. Kim,; C. H. Jin,; B. Chen,; H. Cai,; T. Zhao,; P. Lee,; S. Kahn,; K. Watanabe,; T. Taniguchi,; S. Tongay, et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.
[134]
H. Beyer,; G. Rohde,; A. Grubišić Čabo,; A. Stange,; T. Jacobsen,; L. Bignardi,; D. Lizzit,; P. Lacovig,; C. E. Sanders,; S. Lizzit, et al. 80% valley polarization of free carriers in singly oriented single- layer WS2 on Au(111). Phys. Rev. Lett. 2019, 123, 236802.
[135]
C. H. Jin,; J. Kim,; M. I. B. Utama,; E. C. Regan,; H. Kleemann,; H. Cai,; Y. X. Shen,; M. J. Shinner,; A. Sengupta,; K. Watanabe, et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 2018, 360, 893-896.
[136]
F. Y. Qu,; H. Bragança,; R. Vasconcelos,; F. J. Liu,; S. J. Xie,; H. Zeng, Controlling valley splitting and polarization of dark- and bi-excitons in monolayer WS2 by a tilted magnetic field. 2D Mater. 2019, 6, 045014.
[137]
Y. J. Deng,; Y. J. Yu,; Y. C. Song,; J. Z. Zhang,; N. Z. Wang,; Z. Y. Sun,; Y. F. Yi,; Y. Z. Wu,; S. W. Wu,; J. Y. Zhu, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94-99.
[138]
J. Seo,; D. Y. Kim,; E. S. An,; K. Kim,; G. Y. Kim,; S. Y. Hwang,; D. W. Kim,; B. G. Jang,; H. Kim,; G. Eom, et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.
[139]
Z. F. Wang,; D. A. Rhodes,; K. Watanabe,; T. Taniguchi,; J. C. Hone,; J. Shan,; K. F. Mak, Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76-80.
[140]
G. Onida,; L. Reining,; A. Rubio, Electronic excitations: Density- functional versus many-body Green's-function approaches. Rev. Mod. Phys. 2002, 74, 601-659.
[141]
T. Deilmann,; M. Rohlfing,; U. Wurstbauer, Light-matter interaction in van der Waals hetero-structures. J. Phys.: Condens. Matter 2020, 32, 333002.
Nano Research
Pages 1901-1911
Cite this article:
Rasmita A, Gao W-b. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Research, 2021, 14(6): 1901-1911. https://doi.org/10.1007/s12274-020-3036-x
Topics:
Part of a topical collection:

882

Views

26

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 10 June 2020
Revised: 31 July 2020
Accepted: 04 August 2020
Published: 12 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return