AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

How defects influence the photoluminescence of TMDCs

Mengfan ZhouWenhui WangJunpeng Lu( )Zhenhua Ni( )
School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers, a class of ultrathin materials with a direct bandgap and high exciton binding energies, provide an ideal platform to study the photoluminescence (PL) of light-emitting devices. Atomically thin TMDCs usually contain various defects, which enrich the lattice structure and give rise to many intriguing properties. As the influences of defects can be either detrimental or beneficial, a comprehensive understanding of the internal mechanisms underlying defect behaviour is required for PL tailoring. Herein, recent advances in the defect influences on PL emission are summarized and discussed. Fundamental mechanisms are the focus of this review, such as radiative/nonradiative recombination kinetics and band structure modification. Both challenges and opportunities are present in the field of defect manipulation, and the exploration of mechanisms is expected to facilitate the applications of 2D TMDCs in the future.

References

[1]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[2]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[3]
F. Withers,; O. Del Pozo-Zamudio,; S. Schwarz,; S. Dufferwiel,; P. M. Walker,; T. Godde,; A. P. Rooney,; A. Gholinia,; C. R. Woods,; P. Blake, et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 2015, 15, 8223-8228.
[4]
W. B. Zheng,; Y. Jiang,; X. L. Hu,; H. L. Li,; Z. X. S. Zeng,; X. Wang,; A. L. Pan, Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater. 2018, 6, 1800420.
[5]
S. Schwarz,; A. Kozikov,; F. Withers,; J. K. Maguire,; A. P. Foster,; S. Dufferwiel,; L. Hague,; M. N. Makhonin,; L. R. Wilson,; A. K. Geim, et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater. 2016, 3, 025038.
[6]
A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.
[7]
J. J. Pei,; J. Yang,; T. Yildirim,; H. Zhang,; Y. R. Lu, Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.
[8]
K. F. Mak,; K. L. He,; C. Lee,; G. H. Lee,; J. Hone,; T. F. Heinz,; J. Shan, Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[9]
S. Mouri,; Y. Miyauchi,; K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[10]
H. Y. Shi,; R. S. Yan,; S. Bertolazzi,; J. Brivio,; B. Gao,; A. Kis,; D. Jena,; H. G. Xing,; L. B. Huang, Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072-1080.
[11]
H. N. Wang,; C. J. Zhang,; F. Rana, Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204-8210.
[12]
H. N. Wang,; C. J. Zhang,; F. Rana, Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339-345.
[13]
A. M. Van Der Zande,; P. Y. Huang,; D. A. Chenet,; T. C. Berkelbach,; Y. M. You,; G. H. Lee,; T. F. Heinz,; D. R. Reichman,; D. A. Muller,; J. C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.
[14]
M. M. Ugeda,; A. J. Bradley,; S. F. Shi,; F. H. da Jornada,; Y. Zhang,; D. Y. Qiu,; W. Ruan,; S. K. Mo,; Z. Hussain,; Z. X. Shen, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.
[15]
S. Tongay,; J. Zhou,; C. Ataca,; J. Liu,; J. S. Kang,; T. S. Matthews,; L. You,; J. B. Li,; J. C. Grossman,; J. Q. Wu, Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.
[16]
S. Tongay,; J. Suh,; C. Ataca,; W. Fan,; A. Luce,; J. S. Kang,; J. Liu,; C. Ko,; R. Raghunathanan,; J. Zhou, et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci. Rep. 2013, 3, 2657.
[17]
H. Y. Nan,; Z. L. Wang,; W. H. Wang,; Z. Liang,; Y. Lu,; Q. Chen,; D. W. He,; P. H. Tan,; F. Miao,; X. R. Wang, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.
[18]
H. V. Han,; A. Y. Lu,; L. S. Lu,; J. K. Huang,; H. N. Li,; C. L. Hsu,; Y. C. Lin,; M. H. Chiu,; K. Suenaga,; C. W. Chu, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454-1461.
[19]
M. Amani,; D. H. Lien,; D. Kiriya,; J. Xiao,; A. Azcatl,; J. Noh,; S. R. Madhvapathy,; R. Addou,; S KC,; M. Dubey, et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[20]
X. K. Zhang,; Q. L. Liao,; S. Liu,; Z. Kang,; Z. Zhang,; J. L. Du,; F. Li,; S. H. Zhang,; J. K. Xiao,; B. S. Liu, et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.
[21]
M. Koperski,; K. Nogajewski,; A. Arora,; V. Cherkez,; P. Mallet,; J. Y. Veuillen,; J. Marcus,; P. Kossacki,; M. Potemski, Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503-506.
[22]
Y. M. He,; G. Clark,; J. R. Schaibley,; Y. He,; M. C. Chen,; Y. J. Wei,; X. Ding,; Q. Zhang,; W. Yao,; X. D. Xu, et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497-502.
[23]
W. T. Su,; Y. G. Li,; L. F. Chen,; D. X. Huo,; K. X. Song,; X. W. Huang,; H. B. Shu, Nonstoichiometry induced broadband tunable photoluminescence of monolayer WSe2. Chem. Commun 2018, 54, 743-746.
[24]
Y. F. Chen,; J. Y. Xi,; D. O. Dumcenco,; Z. Liu,; K. Suenaga,; D. Wang,; Z. G. Shuai,; Y. S. Huang,; L. M. Xie, Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610-4616.
[25]
T. C. Berkelbach,; M. S. Hybertsen,; D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.
[26]
X. L. Yang,; S. H. Guo,; F. T. Chan,; K. W. Wong,; W. Y. Ching, Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 1991, 43, 1186-1196.
[27]
I. Kylänpää,; H. P. Komsa, Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 2015, 92, 205418.
[28]
C. Mai,; A. Barrette,; Y. F. Yu,; Y. G. Semenov,; K. W. Kim,; L. Y. Cao,; K. Gundogdu, Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202-206.
[29]
D. K. Zhang,; D. W. Kidd,; K. Varga, Excited biexcitons in transition metal dichalcogenides. Nano Lett. 2015, 15, 7002-7005.
[30]
G. Plechinger,; P. Nagler,; J. Kraus,; N. Paradiso,; C. Strunk,; C. Schuller,; T. Korn, Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi RRL 2015, 9, 457-461.
[31]
J. Suh,; T. E. Park,; D. Y. Lin,; D. Y. Fu,; J. Park,; H. J. Jung,; Y. B. Chen,; C. Ko,; C. Jang,; Y. H. Sun, et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976-6982.
[32]
H. Qiu,; T. Xu,; Z. L. Wang,; W. Ren,; H. Y. Nan,; Z. H. Ni,; Q. Chen,; S. J. Yuan,; F. Miao,; F. Q. Song, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.
[33]
S. Zhang,; C. G. Wang,; M. Y. Li,; D. Huang,; L. J. Li,; W. Ji,; S. W. Wu, Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 2017, 119, 046101.
[34]
G. P. Neupane,; M. D. Tran,; S. J. Yun,; H. Kim,; C. Seo,; J. Lee,; G. H. Han,; A. K. Sood,; J. Kim, Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics. ACS Appl. Mater. Interfaces 2017, 9, 11950-11958.
[35]
W. T. Su,; N. Kumar,; S. J. Spencer,; N. Dai,; D. Roy, Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Res. 2015, 8, 3878-3886.
[36]
D. H. Lien,; S. Z. Uddin,; M. Yeh,; M. Amani,; H. Kim,; J. W. Ager III,; E. Yablonovitch,; A. Javey, Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468-471.
[37]
H. Ardekani,; R. Younts,; Y. L. Yu,; L. Y. Cao,; K. Gundogdu, Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38240-38246.
[38]
B. Y. Zheng,; W. H. Zheng,; Y. Jiang,; S. L. Chen,; D. Li,; C. Ma,; X. X. Wang,; W. Huang,; X. H. Zhang,; H. W. Liu, et al. WO3-WS2 vertical bilayer heterostructures with high photoluminescence quantum yield. J. Am. Chem. Soc. 2019, 141, 11754-11758.
[39]
D. M. Sim,; M. Kim,; S. Yim,; M. J. Choi,; J. Choi,; S. Yoo,; Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115-12123.
[40]
J. S. Ross,; S. F. Wu,; H. Y. Yu,; N. J. Ghimire,; A. M. Jones,; G. Aivazian,; J. Q. Yan,; D. G. Mandrus,; D. Xiao,; W. Yao, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.
[41]
M. S. Kim,; S. J. Yun,; Y. Lee,; C. Seo,; G. H. Han,; K. K. Kim,; Y. H. Lee,; J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399-2405.
[42]
J. Jadczak,; J. Kutrowska-Girzycka,; P. Kapuściński,; Y. S. Huang,; A. Wójs,; L. Bryja, Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology 2017, 28, 395702.
[43]
M. Barbone,; A. R. P. Montblanch,; D. M. Kara,; C. Palacios-Berraquero,; A. R. Cadore,; D. De Fazio,; B. Pingault,; E. Mostaani,; H. Li,; B. Chen, et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 2018, 9, 3721.
[44]
J. J. Pei,; J. Yang,; X. B. Wang,; F. Wang,; S. Mokkapati,; T. Y. Lü,; J. C. Zheng,; Q. H. Qin,; D. Neshev,; H. H. Tan, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 2017, 11, 7468-7475.
[45]
S. D. Zhao,; L. Tao,; P. Miao,; X. J. Wang,; Z. G. Liu,; Y. Wang,; B. S. Li,; Y. Sui,; Y. Wang, Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets. Nano Res. 2018, 11, 3922-3930.
[46]
P. K. Chow,; R. B. Jacobs-Gedrim,; J. Gao,; T. M. Lu,; B. Yu,; H. Terrones,; N. Koratkar, Defect-induced photoluminescence in mono layer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520-1527.
[47]
Z. T. Wu,; W. W. Zhao,; J. Jiang,; T. Zheng,; Y. M. You,; J. P. Lu,; Z. H. Ni, Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C 2017, 121, 12294-12299.
[48]
K. Greben,; S. Arora,; M. G. Harats,; K. I. Bolotin, Intrinsic and extrinsic defect-related excitons in TMDCs. Nano Lett. 2020, 20, 2544-2550.
[49]
G. Moody,; K. Tran,; X. B. Lu,; T. Autry,; J. M. Fraser,; R. P. Mirin,; L. Yang,; X. Q. Li,; K. L. Silverman, Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 2018, 121, 057403.
[50]
A. Venkatakrishnan,; H. Chua,; P. X. Tan,; Z. L. Hu,; H. W. Liu,; Y. P. Liu,; A. Carvalho,; J. P. Lu,; C. H. Sow, Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano 2017, 11, 713-720.
[51]
G. Finkelstein,; H. Shtrikman,; I. Bar-Joseph, Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 1995, 74, 976-979.
[52]
A. J. Goodman,; A. P. Willard,; W. A. Tisdale, Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2. Phys. Rev. B 2017, 96, 121404.
[53]
E. Knill,; R. Laflamme,; G. J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46-52.
[54]
C. H. Bennett,; G. Brassard, Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7-11.
[55]
H. J. Kimble, The quantum internet. Nature 2008, 453, 1023-1030.
[56]
M. Toth,; I. Aharonovich, Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem. 2019, 70, 123-142.
[57]
A. Branny,; S. Kumar,; R. Proux,; B. D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.
[58]
J. C. Dang,; S. B. Sun,; X. Xie,; Y. Yu,; K. Peng,; C. J. Qian,; S. Y. Wu,; F. L. Song,; J. N. Yang,; S. Xiao, et al. Identifying defect-related quantum emitters in monolayer WSe2. npj 2D Mater. Appl. 2020, 4, 2.
[59]
J. Klein,; M. Lorke,; M. Florian,; F. Sigger,; L. Sigl,; S. Rey,; J. Wierzbowski,; J. Cerne,; K. Muller,; E. Mitterreiter, et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 2019, 10, 2755.
[60]
Y. J. Zheng,; Y. F. Chen,; Y. L. Huang,; P. K. Gogoi,; M. Y. Li,; L. J. Li,; P. E. Trevisanutto,; Q. X. Wang,; S. J. Pennycook,; A. T. S. Wee, et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050-6059.
[61]
K. Tai,; T. R. Hayes,; S. L. McCall,; W. T. Tsang, Optical measurement of surface recombination in InGaAs quantum well mesa structures. Appl. Phys. Lett. 1988, 53, 302-303.
[62]
Z. Chi,; H. H. Chen,; Z. Chen,; Q. Zhao,; H. L. Chen,; Y. X. Weng, Ultrafast energy dissipation via coupling with internal and external phonons in two-dimensional MoS2. ACS Nano 2018, 12, 8961-8969.
[63]
J. P. Zhang,; L. H. Yao,; N. Zhou,; H. W. Dai,; H. Cheng,; M. S. Wang,; L. M. Zhang,; X. D. Chen,; X. Wang,; T. Y. Zhai, et al. Multiphoton excitation and defect-enhanced fast carrier relaxation in few-layered MoS2 crystals. J. Phys. Chem. C 2019, 123, 11216-11223.
[64]
Y. L. Li,; W. Liu,; Y. K. Wang,; Z. H. Xue,; Y. C. Leng,; A. Q. Hu,; H. Yang,; P. H. Tan,; Y. Q. Liu,; H. Misawa, et al. Ultrafast electron cooling and decay in monolayer WS2 revealed by time- and energy-resolved photoemission electron microscopy. Nano Lett. 2020, 20, 3747-3753.
[65]
L. Q. Li,; M. F. Lin,; X. Zhang,; A. Britz,; A. Krishnamoorthy,; R. R. Ma,; R. K. Kalia,; A. Nakano,; P. Vashishta,; P. Ajayan, et al. Phonon-suppressed auger scattering of charge carriers in defective two-dimensional transition metal dichalcogenides. Nano Lett. 2019, 19, 6078-6086.
[66]
D. J. Robbins,; P. T. Landsberg, Impact ionisation and auger recombination involving traps in semiconductors. J. Phys. C: Solid State Phys. 1980, 13, 2425-2439.
[67]
H. N. Wang,; J. H. Strait,; C. J. Zhang,; W. M. Chan,; C. Manolatou,; S. Tiwari,; F. Rana, Fast exciton annihilation by capture of electrons or holes by defects via auger scattering in monolayer metal dichalcogenides. Phys. Rev. B 2015, 91, 165411.
[68]
Y. Z. Li,; J. Shi,; H. Y. Chen,; R. Wang,; Y. Mi,; C. Zhang,; W. N. Du,; S. Zhang,; Z. Liu,; Q. Zhang, et al. The auger process in multilayer WSe2 crystals. Nanoscale 2018, 10, 17585-17592.
[69]
X. Xing,; L. T. Zhao,; Z. Y. Zhang,; X. K. Liu,; K. L. Zhang,; Y. Yu,; X. Lin,; H. Y. Chen,; J. Q. Chen,; Z. M. Jin, et al. Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate. J. Phys. Chem. C 2017, 121, 20451-20457.
[70]
K. Chen,; R. Ghosh,; X. H. Meng,; A. Roy,; J. S. Kim,; F. He,; S. C. Mason,; X. C. Xu,; J. F. Lin,; D. Akinwande, et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. Npj 2D Mater. Appl. 2017, 1, 15.
[71]
H. Liu,; C. Wang,; Z. G. Zuo,; D. M. Liu,; J. B. Luo, Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Adv. Mater. 2020, 32, 1906540.
[72]
M. Palummo,; M. Bernardi,; J. C. Grossman, Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794-2800.
[73]
H. Liu,; T. Wang,; C. Wang,; D. M. Liu,; J. B. Luo, Exciton radiative recombination dynamics and nonradiative energy transfer in two-dimensional transition-metal dichalcogenides. J. Phys. Chem. C 2019, 123, 10087-10093.
[74]
A. O. A. Tanoh,; J. Alexander-Webber,; J. Xiao,; G. Delport,; C. A. Williams,; H. Bretscher,; N. Gauriot,; J. Allardice,; R. Pandya,; Y. Fan, et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 2019, 19, 6299-6307.
[75]
S. V. Sivaram,; A. T. Hanbicki,; M. R. Rosenberger,; G. G. Jernigan,; H. J. Chuang,; K. M. McCreary,; B. T. Jonker, Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces 2019, 11, 16147-16155.
[76]
S. Barja,; S. Refaely-Abramson,; B. Schuler,; D. Y. Qiu,; A. Pulkin,; S. Wickenburg,; H. Ryu,; M. M. Ugeda,; C. Kastl,; C. Chen, et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.
[77]
N. Kang,; H. P. Paudel,; M. N. Leuenberger,; L. Tetard,; S. I. Khondaker, Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258-21263.
[78]
H. R. Gutiérrez,; N. Perea-López,; A. L. Elias,; A. Berkdemir,; B. Wang,; R. T. Lv,; F. López-Urías,; V. H. Crespi,; H. Terrones,; M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447-3454.
[79]
Z. L. Hu,; J. Avila,; X. Y. Wang,; J. F. Leong,; Q. Zhang,; Y. P. Liu,; M. C. Asensio,; J. P. Lu,; A. Carvalho,; C. H. Sow, et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett. 2019, 19, 4641-4650.
[80]
L. Yuan,; L. B. Huang, Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402-7408.
[81]
Y. L. Yu,; Y. F. Yu,; C. Xu,; A. Barrette,; K. Gundogdu,; L. Y. Cao, Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 201111.
[82]
L. Yuan,; T. Wang,; T. Zhu,; M. W. Zhou,; L. B. Huang, Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 2017, 8, 3371-3379.
[83]
Y. Lee,; J. Kim, Controlling lattice defects and inter-exciton interactions in monolayer transition metal dichalcogenides for efficient light emission. ACS Photonics 2018, 5, 4187-4194.
[84]
Y. Lee,; G. Ghimire,; S. Roy,; Y. Kim,; C. Seo,; A. K. Sood,; J. I. Jang,; J. Kim, Impeding exciton-exciton annihilation in monolayer WS2 by laser irradiation. ACS Photonics 2018, 5, 2904-2911.
[85]
R. Balog,; B. Jørgensen,; L. Nilsson,; M. Andersen,; E. Rienks,; M. Bianchi,; M. Fanetti,; E. Laegsgaard,; A. Baraldi,; S. Lizzit, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315-319.
[86]
Y. B. Zhang,; T. T. Tang,; C. Girit,; Z. Hao,; M. C. Martin,; A. Zettl,; M. F. Crommie,; Y. R. Shen,; F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.
[87]
N. N. Mao,; Y. F. Chen,; D. M. Liu,; J. Zhang,; L. M. Xie, Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 2013, 9, 1312-1315.
[88]
E. Scalise,; M. Houssa,; G. Pourtois,; V. Afanas’ev,; A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43-48.
[89]
W. S. Yun,; S. W. Han,; S. C. Hong,; I. G. Kim,; J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.
[90]
M. Matsunaga,; A. Higuchi,; G. C. He,; T. Yamada,; P. Kruger,; Y. Ochiai,; Y. J. Gong,; R. Vajtai,; P. M. Ajayan,; J. P. Bird, et al. Nanoscale-barrier formation induced by low-dose electron-beam exposure in ultrathin MoS2 transistors. ACS Nano 2016, 10, 9730-9737.
[91]
H. P. Komsa,; S. Kurasch,; O. Lehtinen,; U. Kaiser,; A. V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.
[92]
B. Schuler,; J. H. Lee,; C. Kastl,; K. A. Cochrane,; C. T. Chen,; S. Refaely-Abramson,; S. J. Yuan,; E. Van Veen,; R. Roldan,; N. J. Borys, et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 2019, 13, 10520-10534.
[93]
Y. L. Huang,; Y. F. Chen,; W. J. Zhang,; S. Y. Quek,; C. H. Chen,; L. J. Li,; W. T. Hsu,; W. H. Chang,; Y. J. Zheng,; W. Chen, et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.
[94]
W. T. Zhang,; Y. Lin,; Q. Wang,; W. J. Li,; Z. F. Wang,; J. L. Q. Song,; X. D. Li,; L. J. Zhang,; L. X. Zhu,; X. L. Xu, Well-hidden grain boundary in the monolayer MoS2 formed by a two-dimensional core-shell growth mode. ACS Nano 2017, 11, 10608-10615.
[95]
A. Azizi,; X. L. Zou,; P. Ercius,; Z. H. Zhang,; A. L. Elías,; N. Perea-López,; G. Stone,; M. Terrones,; B. I. Yakobson,; N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.
[96]
H. J. Liu,; H. Zheng,; F. Yang,; L. Jiao,; J. L. Chen,; W. Ho,; C. L. Gao,; J. F. Jia,; M. H. Xie, Line and point defects in MoSe2 bilayer studied by scanning tunneling microscopy and spectroscopy. ACS Nano 2015, 9, 6619-6625.
[97]
D. O. Dumcenco,; H. Kobayashi,; Z. Liu,; Y. S. Huang,; K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo1-xWxS2 single layers. Nat. Commun. 2013, 4, 1351.
[98]
X. D. Duan,; C. Wang,; Z. Fan,; G. L. Hao,; L. Z. Kou,; U. Halim,; H. L. Li,; X. P. Wu,; Y. C. Wang,; J. H. Jiang, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264-269.
[99]
Q. L. Feng,; Y. M. Zhu,; J. H. Hong,; M. Zhang,; W. J. Duan,; N. N. Mao,; J. X. Wu,; H. Xu,; F. L. Dong,; F. Lin, et al. Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648-2653.
[100]
C. L. Tan,; Z. C. Lai,; H. Zhang, Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater. 2017, 29, 1701392.
[101]
H. L. Li,; X. D. Duan,; X. P. Wu,; X. J. Zhuang,; H. Zhou,; Q. L. Zhang,; X. L. Zhu,; W. Hu,; P. Y. Ren,; P. F. Guo, et al. Growth of alloy MoS2xSe2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756-3759.
[102]
L. H. Li,; W. H. Zheng,; C. Ma,; H. P. Zhao,; F. Jiang,; Y. Ouyang,; B. Y. Zheng,; X. W. Fu,; P. Fan,; M. Zheng, et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der waals semiconductor heterostructures. Nano Lett. 2020, 20, 3361-3368.
[103]
M. Amani,; P. Taheri,; R. Addou,; G. H. Ahn,; D. Kiriya,; D. H. Lien,; J. W. Ager III,; R. M. Wallace,; A. Javey, Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides. Nano Lett. 2016, 16, 2786-2791.
Nano Research
Pages 29-39
Cite this article:
Zhou M, Wang W, Lu J, et al. How defects influence the photoluminescence of TMDCs. Nano Research, 2021, 14(1): 29-39. https://doi.org/10.1007/s12274-020-3037-9
Topics:

1016

Views

62

Crossref

0

Web of Science

62

Scopus

2

CSCD

Altmetrics

Received: 19 June 2020
Revised: 29 July 2020
Accepted: 04 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return