AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metallo-aerogels derived from chitosan with encapsulated metal nanoparticles as robust, efficient and selective nanocatalysts towards reduction of nitroarenes

Yajing Shen1Qingshu Zheng1Jianhong Liu1Tao Tu1,2,3( )
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue avenue, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

Abstract

A series of robust metallo-aerogels are readily fabricated by pyrolysis of xerogels derived from chitosan-metal (M = Fe, Co, Ni) hydrogels. Owing to the strong coordination between metal ions and the functional groups (NH2 and OH) of chitosan, metallo-aerogels consisting of encapsulated metal-nanoparticles (MNPs) by graphite shells were obtained, as supported by various characterizations including high-resolution transmission electron microscope (HR-TEM), X-ray diffraction (XRD), and Raman. The resulting metallo-aerogels could be functioned as highly stable, efficient and selective nanocatalysts towards the hydrogenation of nitroarenes to amines at low catalyst loading (1.2 mol.%-2.4 mol.%). Remarkably, the metallo-aerogels could be reused for more than 30 runs without obvious loss of activity and selectivity. These distinguished performances were attributed to the graphitic shells formed during the pyrolysis, which hampered the possible aggregation of MNPs, prevented metal leaching and increased their stability.

Electronic Supplementary Material

Download File(s)
12274_2020_3040_MOESM1_ESM.pdf (11 MB)

References

[1]
Z. Li,; K. S. Suslick, Chemically induced sintering of nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 14193-14196.
[2]
Y. Q. Dai,; P. Lu,; Z. M. Cao,; C. T. Campbell,; Y. N. Xia, The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314-4331.
[3]
A. M. Gänzler,; M. Casapu,; P. Vernoux,; S. Loridant,; F. J. Cadete Santos Aires,; T. Epicier,; B. Betz,; R. Hoyer,; J. D. Grunwaldt, Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem., Int. Ed. 2017, 56, 13078-13082.
[4]
J. H. Dong,; Q. Fu,; Z. Jiang,; B. B. Mei,; X. H. Bao, Carbide-supported Au catalysts for water-gas shift reactions: A new territory for the strong metal-support interaction effect. J. Am. Chem. Soc. 2018, 140, 13808-13816.
[5]
H. M. Torres Galvis,; J. H. Bitter,; C. B. Khare,; M. Ruitenbeek,; A. I. Dugulan,; K. P. de Jong, Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835-838.
[6]
H. L. Tang,; F. Liu,; J. K. Wei,; B. T. Qiao,; K. F. Zhao,; Y. Su,; C. Z. Jin,; L. Li,; J. Y. Liu,; J. H. Wang, et al. Ultrastable hydroxyapatite/ titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew. Chem., Int. Ed. 2016, 55, 10606-10611.
[7]
H. L. Tang,; J. K. Wei,; F. Liu,; B. T. Qiao,; X. L. Pan,; L. Li,; J. Y. Liu,; J. H. Wang,; T. Zhang, Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 2016, 138, 56-59.
[8]
L. X. Wang,; L. Wang,; X. J. Meng,; F. S. Xiao, New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.
[9]
J. Zhang,; L. Wang,; B. S. Zhang,; H. S. Zhao,; U. Kolb,; Y. H. Zhu,; L. M. Liu,; Y. Han,; G. X. Wang,; C. X. Wang, et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 2018, 1, 540-546.
[10]
T. Y. Wang,; J. S. Liang,; Z. L. Zhao,; S. Z. Li,; G. Lu,; Z. C. Xia,; C. Wang,; J. H. Luo,; J. T. Han,; C. Ma, et al. Sub-6 nm fully ordered L 10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv. Energy Mater. 2019, 9, 1803771.
[11]
A. Armutlulu,; M. A. Naeem,; H. J. Liu,; S. M. Kim,; A. Kierzkowska,; A. Fedorov,; C, R. Müller, Multishelled CaO microspheres stabilized by atomic layer deposition of Al2O3 for enhanced CO2 capture performance. Adv. Mater. 2017, 29, 1702896.
[12]
S. T. Hunt,; M. Milina,; A. C. Alba-Rubio,; C. H. Hendon,; J. A. Dumesic,; Y. Román-Leshkov, Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974-978.
[13]
H. Zhong,; C. Yang,; L. Z. Fan,; Z. H. Fu,; X. Yang,; X. C. Wang,; R. H. Wang, Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy Environ. Sci. 2019, 12, 418-426.
[14]
W. C. Zhan,; Y. Shu,; Y. J. Sheng,; H. Y. Zhu,; Y. L. Guo,; L. Wang,; Y. Guo,; J. S. Zhang,; G. Z. Lu,; S. Dai, Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew. Chem., Int. Ed. 2017, 56, 4494-4498.
[15]
C. L. Yi,; Y. Q. Yang,; Z. H. Nie, Alternating copolymerization of inorganic nanoparticles. J. Am. Chem. Soc. 2019, 141, 7917-7925.
[16]
R. R. Qin,; Y. C. Liu,; F. Tao,; C. Li,; W. F. Cao,; P. Yang, Protein-bound freestanding 2D metal film for stealth information transmission. Adv. Mater. 2019, 31, 1803377.
[17]
B. Cai,; A. Eychmüller, Promoting electrocatalysis upon aerogels. Adv. Mater. 2019, 31, 1804881.
[18]
L. Chen,; R. Du,; J. H. Zhu,; Y. Y. Mao,; C. Xue,; N. Zhang,; Y. L. Hou,; J. Zhang,; T. Yi, Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small 2015, 11, 1423-1429.
[19]
Z. L. Yu,; B. Qin,; Z. Y. Ma,; J. Huang,; S. C. Li,; H. Y. Zhao,; H. Li,; Y. B. Zhu,; H. A. Wu,; S. H. Yu, Superelastic hard carbon nanofiber aerogels. Adv. Mater. 2019, 31, 1900651.
[20]
S. C. Li,; B. C. Hu,; Y. W. Ding,; H. W. Liang,; C. Li,; Z. Y. Yu,; Z. Y. Wu,; W. S. Chen,; S. H. Yu, Wood-derived ultrathin carbon nanofiber aerogels. Angew. Chem., Int. Ed. 2018, 57, 7085-7090.
[21]
J. F. Qu,; D. Y. Chen,; N. J. Li,; Q. F. Xu,; H. Li,; J. H. He,; J. M. Lu, 3D gold-modified cerium and cobalt oxide catalyst on a graphene aerogel for highly efficient catalytic formaldehyde oxidation. Small 2019, 15, 1804415.
[22]
Y. Gu,; S. Chen,; J. Ren,; Y. A. Jia,; C. M. Chen,; S. Komarneni,; D. J. Yang,; X. D. Yao, Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.
[23]
G. T. Fu,; X. X. Yan,; Y. F. Chen,; L. Xu,; D. M. Sun,; J. M. Lee,; Y. W. Tang, Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 2018, 30, 1704609.
[24]
J. Cui,; S. S. Yao,; Z. H. Lu,; J. Q. Huang,; W. G. Chong,; F. Ciucci,; J. K. Kim, Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT Aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 2018, 8, 1702488.
[25]
C. Z. Zhu,; S. F. Fu,; J. H. Song,; Q. R. Shi,; D. Su,; M. H. Engelhard,; X. L. Li,; D. D. Xiao,; D. S. Li,; L. Estevez, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.
[26]
Z. Y. Wu,; H. W. Liang,; B. C. Hu,; S. H. Yu, Emerging carbon-nanofiber aerogels: Chemosynthesis versus biosynthesis. Angew. Chem., Int. Ed. 2018, 57, 15646-15662.
[27]
Z. Y. Wu,; H. W. Liang,; L. F. Chen,; B. C. Hu,; S. H. Yu, Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 2016, 49, 96-105.
[28]
Q. J. Wang,; L. Y. Chen,; Z. Liu,; N. Tsumori,; M. Kitta,; Q. Xu, Phosphate-mediated immobilization of high-performance AuPd nanoparticles for dehydrogenation of formic acid at room temperature. Adv. Funct. Mater. 2019, 29, 1903341.
[29]
J. Y. Chen,; H. Y. Wang,; Z. Wang,; S. J. Mao,; J. Yu,; Y. Wang,; Y. Wang, Redispersion of Mo-based catalysts and the rational design of super small-sized metallic Mo species. ACS Catal. 2019, 9, 5302-5307.
[30]
Z. Z. Wei,; J. Wang,; S. J. Mao,; D. F. Su,; H. Y. Jin,; Y. H. Wang,; F. Xu,; H. R. Li,; Y. Wang, In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 2015, 5, 4783-4789.
[31]
T. Tu,; W. W. Fang,; Z. M. Sun, Visual-size molecular recognition based on gels. Adv. Mater. 2013, 25, 5304-5313.
[32]
T. Tu,; W. W. Fang,; X. L. Bao,; X. B. Li,; K. H. Dötz, Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. Angew. Chem., Int. Ed. 2011, 50, 6601-6605.
[33]
A. Ghadban,; A. S. Ahmed,; Y. Ping,; R. Ramos,; N. Arfin,; B. Cantaert,; R. V. Ramanujan,; A. Miserez, Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem. Commun. 2016, 52, 697-700.
[34]
Z. F. Sun,; F. C. Lv,; L. J. Cao,; L. Liu,; Y. Zhang,; Z. G. Lu, Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew. Chem., Int. Ed. 2015, 54, 7944-7948.
[35]
C. Liu,; J. Wang,; J. S. Li,; R. Luo,; X. Y. Sun,; J. Y. Shen,; W. Q. Han,; L. J. Wang, Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. Carbon 2017, 114, 706-716.
[36]
Z. J. Wei,; Y. X. Hou,; X. M. Zhu,; L. Y. Guo,; Y. X. Liu,; A. Y. Zhang, Nitrogen-doped graphene-supported iron catalyst for highly chemoselective hydrogenation of nitroarenes. ChemCatChem 2018, 10, 2009-2013.
[37]
E. Haye,; C. S. Chang,; G. Dudek,; T. Hauet,; J. Ghanbaja,; Y. Busby,; N. Job,; L. Houssiau,; J. J. Pireaux, Tuning the magnetism of plasma-synthesized iron nitride nanoparticles: Application in pervaporative membranes. ACS Appl. Nano Mater. 2019, 2, 2484-2493.
[38]
P. Zhang,; X. B. Wang,; W. Wang,; X. Lei,; H. Yang, Magnetic and hydrazine-decomposition catalytic properties of ε-Fe3N synthesized from a novel precursor. J. Mater. Chem. A 2015, 3, 6464-6469
[39]
J. Zhao,; N. Fu,; R. Liu, Graphite-wrapped Fe core-shell nanoparticles anchored on graphene as pH-universal electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2018, 10, 28509-28516.
[40]
A. Ganguly,; S. Sharma,; P. Papakonstantinou,; J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009-17019.
[41]
D. S. Kuznetsov,; A. E. Yakshin,; J. M. Sturm; F. Bijkerk, Grazing-incidence La/B-based multilayer mirrors for 6.x nm wavelength. J. Nanosci. Nanotechnol. 2019, 19, 585-592.
[42]
C. Z. Zhu,; S. F. Fu,; J. H. Song,; Q. R. Shi,; D. Su,; M. H. Engelhard,; X. L. Li,; D. D. Xiao,; D. S. Li,; L. Estevez, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.
[43]
M. Wang,; Y. S. Yang,; X. B. Liu,; Z. H. Pu,; Z. K. Kou,; P. P. Zhu,; S. C. Mu, The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction. Nanoscale 2017, 9, 7641-7649.
[44]
Z. Schnepp,; M. Thomas,; S. Glatzel,; K. Schlichte,; R. Palkovits,; C. Giordano, One pot route to sponge-like Fe3N nanostructures. J. Mater. Chem. 2011, 21, 17760-17764.
[45]
X. T. Xu,; J. Tang,; V. Y. Kaneti,; H. B. Tan,; T. Chen,; L. K. Pan,; T. Yang,; Y. Bando,; Y. Yamauchi, Unprecedented capacitive deionization performance of interconnected iron-nitrogen-doped carbon tubes in oxygenated saline water. Mater. Horiz. 2020, 7, 1404-1412.
[46]
H. B. Tan,; J. Tang,; J. Henzie,; Y. Q. Li,; X. T. Xu,; T. Chen,; Z. L. Wang,; J. Y. Wang,; Y. Ide,; Y. Bando, et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 2018, 12, 5674-5683.
[47]
B. Sahoo,; A. E. Surkus,; M. M. Pohl,; J. Radnik,; M. Schneider,; S. Bachmann,; M. Scalone,; K. Junge,; M. Beller, A biomass-derived non-noble cobalt catalyst for selective hydrodehalogenation of alkyl and (Hetero)aryl halides. Angew. Chem., Int. Ed. 2017, 56, 11242-11247.
[48]
I. Ziccarelli,; H. Neumann,; C. Kreyenschulte,; B. Gabriele,; M. Beller, Pd-Supported on N-doped carbon: Improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chem. Commun. 2016, 52, 12729-12732.
[49]
Y. N. Duan,; X. S. Dong,; T. Song,; Z. Z. Wang,; J. L. Xiao,; Y. Z. Yuan,; Y. Yang, Hydrogenation of functionalized nitroarenes catalyzed by single-phase pyrite FeS2 nanoparticles on N,S-codoped porous carbon. ChemSusChem 2019, 12, 4636-4644.
[50]
C. Bäumler,; R. Kempe, The direct synthesis of imines, benzimidazoles and quinoxalines from nitroarenes and carbonyl compounds by selective nitroarene hydrogenation employing a reusable iron catalyst. Chem. -Eur. J. 2018, 24, 8989-8993.
[51]
J. R. Morse,; J. F. Callejas,; A. J. Darling,; R. E. Schaak, Bulk iron pyrite as a catalyst for the selective hydrogenation of nitroarenes. Chem. Commun. 2017, 53, 4807-4810.
[52]
R. V. Jagadeesh,; A. E. Surkus,; H. Junge,; M. M. Pohl,; J. Radnik,; J. Rabeah,; H. Huan,; V. Schünemann,; A. Brückner,; M. Beller, Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073-1076.
[53]
R. V. Jagadeesh,; T. Stemmler,; A. E. Surkus,; H. Junge,; K. Junge,; M. Beller, Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines. Nat. Protoc. 2015, 10, 548-557.
[54]
W. B. Gong,; Y. Lin,; C. Chen,; M. Al-Mamun,; H. S. Lu,; G. Z. Wang,; H. M. Zhang,; H. J. Zhao, Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 2019, 31, 1808341.
[55]
M. Yuan,; Y. Long,; J. Yang,; X. W. Hu,; D. Xu,; Y. Y. Zhu,; Z. P. Dong, Biomass sucrose-derived cobalt@nitrogen-doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid. ChemSusChem 2018, 11, 4156-4165.
[56]
W. Li,; J. Artz,; C. Broicher,; K. Junge,; H. Hartmann,; A. Besmehn,; R. Palkovits,; M. Beller, Superior activity and selectivity of heterogenized cobalt catalysts for hydrogenation of nitroarenes. Catal. Sci. Technol. 2019, 9, 157-162.
[57]
B. Sahoo,; D. Formenti,; C. Topf,; S. Bachmann,; M. Scalone,; K. Junge,; M. Beller, Biomass-derived catalysts for selective hydrogenation of nitroarenes. ChemSusChem 2017, 10, 3035-3039.
[58]
F. A. Westerhaus,; R. V. Jagadeesh,; G. Wienhöfer,; M. M. Pohl,; J. Radnik,; A. E. Surkus,; J. Rabeah,; K. Junge,; H. Junge,; M. Nielsen, et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537-543.
[59]
W. She,; T. Q. J. Qi,; M. X. Cui,; P. F. Yan,; S. W. Ng.; W. Z. Li,; G. M. Li, High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl. Mater. Interfaces 2018, 10, 14698-14707.
[60]
G. Hahn,; J. K. Ewert,; C. Denner,; D. Tilgner,; R. Kempe, A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. ChemCatChem 2016, 8, 2461-2465.
Nano Research
Pages 59-65
Cite this article:
Shen Y, Zheng Q, Liu J, et al. Metallo-aerogels derived from chitosan with encapsulated metal nanoparticles as robust, efficient and selective nanocatalysts towards reduction of nitroarenes. Nano Research, 2021, 14(1): 59-65. https://doi.org/10.1007/s12274-020-3040-1
Topics:

740

Views

11

Crossref

0

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 25 March 2020
Revised: 05 August 2020
Accepted: 05 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return