AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Non-volatile programmable homogeneous lateral MoTe2 junction for multi-bit flash memory and high-performance optoelectronics

Enxiu Wu( )Yuan XieShijie WangDaihua ZhangXiaodong Hu( )Jing Liu( )
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China
Show Author Information

Graphical Abstract

Abstract

Flash memories and semiconductor p-n junctions are two elementary but incompatible building blocks of most electronic and optoelectronic devices. The pressing demand to efficiently transfer massive data between memories and logic circuits, as well as for high data storage capability and device integration density, has fueled the rapid growth of technique and material innovations. Two-dimensional (2D) materials are considered as one of the most promising candidates to solve this challenge. However, a key aspect for 2D materials to build functional devices requires effective and accurate control of the carrier polarity, concentration and spatial distribution in the atomically thin structures. Here, a non-volatile opto-electrical doping approach is demonstrated, which enables reversibly writing spatially resolved doping patterns in the MoTe2 conductance channel through a MoTe2/hexagonal boron nitride (h-BN) heterostructure. Based on the doping effect induced by the combination of electrostatic modulation and ultraviolet light illumination, a 3-bit flash memory and various homojunctions on the same MoTe2/BN heterostructure are successfully developed. The flash memory achieved 8 well distinguished memory states with a maximum on/off ratio over 104. Each state showed negligible decay during the retention time of 2,400 s. The heterostructure also allowed the formation of p-p, n-n, p-n, and n-p homojunctions and the free transition among these states. The MoTe2 p-n homojunction with a rectification ratio of 103 exhibited excellent photodetection and photovoltaic performance. Having the memory device and p-n junction built on the same structure makes it possible to bring memory and computational circuit on the same chip, one step further to realize near-memory computing.

Electronic Supplementary Material

Download File(s)
12274_2020_3041_MOESM1_ESM.pdf (1.4 MB)

References

[1]
D. Akinwande,; C. Huyghebaert,; C. H. Wang,; M. I. Serna,; S. Goossens,; L. J. Li,; H. S. P. Wong,; F. H. L. Koppens, Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507-518.
[2]
H. S. P. Wong,; S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191-194.
[3]
A. Allain,; A. Kis, Electron and hole mobilities in single-layer WSe2. ACS Nano 2014, 8, 7180-7185.
[4]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[5]
D. Ovchinnikov,; A. Allain,; Y. S. Huang,; D. Dumcenco,; A. Kis, Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.
[6]
N. R. Pradhan,; D. Rhodes,; S. M. Feng,; Y. Xin,; S. Memaran,; B. H. Moon,; H. Terrones,; M. Terrones,; L. Balicas, Field-effect transistors based on few-layered α-MoTe2. ACS Nano 2014, 8, 5911-5920.
[7]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[8]
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.
[9]
G. J. Wu,; X. D. Wang,; Y. Chen,; S. Q. Wu,; B. M. Wu,; Y. Y. Jiang,; H. Shen,; T. Lin,; Q. Liu,; X. R. Wang, et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.
[10]
S. Q. Fan,; W. F. Shen,; C. H. An,; Z. Y. Sun,; S. Y. Wu,; L. Y. Xu,; D. Sun,; X. D. Hu,; D. H. Zhang,; J. Liu, Implementing lateral MoSe2 P-N homojunction by efficient carrier-type modulation. ACS Appl. Mater. Interfaces 2018, 10, 26533-26538.
[11]
M. X. Li,; J. S. Chen,; M. Cotlet, Light-induced interfacial phenomena in atomically thin 2D van der Waals material hybrids and heterojunctions. ACS Energy Lett. 2019, 4, 2323-2335.
[12]
J. Velasco, Jr.; L. Ju,; D. Wong,; S. Kahn,; J. Lee,; H. Z. Tsai,; C. Germany,; S. Wickenburg,; J. Lu,; T. Taniguchi, et al. Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures. Nano Lett. 2016, 16, 1620-1625.
[13]
E. X. Wu,; Y. Xie,; Q. Z. Liu,; X. D. Hu,; J. Liu,; D. H. Zhang,; C. W. Zhou, Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano 2019, 13, 5430-5438.
[14]
S. Larentis,; B. Fallahazad,; H. C. P. Movva,; K. Kim,; A. Rai,; T. Taniguchi,; K. Watanabe,; S. K. Banerjee,; E. Tutuc, Reconfigurable complementary monolayer MoTe2 field-effect transistors for integrated circuits. ACS Nano 2017, 11, 4832-4839.
[15]
A. Avsar,; K. Marinov,; E. G. Marin,; G. Iannaccone,; K. Watanabe,; T. Taniguchi,; G. Fiori,; A. Kis, Reconfigurable diodes based on vertical WSe2 transistors with van der Waals bonded contacts. Adv. Mater. 2018, 30, 1707200.
[16]
L. Lv,; F. W. Zhuge,; F. J. Xie,; X. J. Xiong,; Q. F. Zhang,; N. Zhang,; Y. Huang,; T. Y. Zhai, Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331
[17]
J. Heo,; H. Jeong,; Y. Cho,; J. Lee,; K. Lee,; S. Nam,; E. K. Lee,; S. Lee,; H. Lee,; S. Hwang, et al. Reconfigurable van der Waals heterostructured devices with metal-insulator transition. Nano Lett. 2016, 16, 6746-6754.
[18]
D. Li,; C. G. Zhu,; H. W. Liu,; X. X. Sun,; B. Y. Zheng,; Y. Liu,; Y. Liu,; X. W. Wang,; X. L. Zhu,; X. Wang, et al. Light-triggered two-dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. Sci. Bull. 2020, 65, 293-299.
[19]
G. J. Wu,; B. B. Tian,; L. Liu,; W. Lv,; S. Wu,; X. D. Wang,; Y. Chen,; J. Y. Li,; Z. Wang,; S. Q. Wu, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43-50.
[20]
D. S. Qu,; X. C. Liu,; M. Huang,; C. Lee,; F. Ahmed,; H. Kim,; R. S. Ruoff,; J. Hone,; W. J. Yoo, Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.
[21]
J. C. Sun,; Y. Y. Wang,; S. Q. Guo,; B. S. Wan,; L. Q. Dong,; Y. D. Gu,; C. Song,; C. F. Pan,; Q. H. Zhang,; L. Gu, et al. Lateral 2D WSe2 p-n Homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.
[22]
A. Pospischil,; M. M. Furchi,; T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257-261.
[23]
M. S. Choi,; D. S. Qu,; D. Lee,; X. C. Liu,; K. Watanabe,; T. Taniguchi,; W. J. Yoo, Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332-9340.
[24]
X. C. Yu,; S. L. Zhang,; H. B. Zeng,; Q. J. Wang, Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34-41.
[25]
J. Y. Lim,; A. Pezeshki,; S. Oh,; J. S. Kim,; Y. T. Lee,; S. Yu,; D. K. Hwang,; G. H. Lee,; H. J. Choi,; S. Im, Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater. 2017, 29, 1701798.
[26]
W. Luo,; M. J. Zhu,; G. Peng,; X. M. Zheng,; F. Miao,; S. X. Bai,; X. A. Zhang,; S. Q. Qin, Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater. 2018, 28, 1704539.
[27]
D. Li,; M. Y. Chen,; Z. Z. Sun,; P. Yu,; Z. Liu,; P. M. Ajayan,; Z. X. Zhang, Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901-906.
[28]
Z. X. Wang,; F. Wang,; L. Yin,; Y. Huang,; K. Xu,; F. M. Wang,; X. Y. Zhan,; J. He, Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics. Nanoscale 2016, 8, 13245-13250.
[29]
C. S. Liu,; X. Yan,; X. F. Song,; S. J. Ding,; D. W. Zhang,; P. Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.
[30]
S. Bertolazzi,; D. Krasnozhon,; A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246-3252.
[31]
H. Tian,; B. C. Deng,; M. L. Chin,; X. D. Yan,; H. Jiang,; S. J. Han,; V. Sun,; Q. F. Xia,; M. Dubey,; F. N. Xia, et al. A dynamically reconfigurable ambipolar black phosphorus memory device. ACS Nano 2016, 10, 10428-10435.
[32]
D. Li,; M. Y. Chen,; Q. J. Zong,; Z. X. Zhang, Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 2017, 17, 6353-6359.
[33]
Y. Ding,; L. Liu,; J. Y. Li,; R. R. Cao,; Y. G. Jiang,; C. S. Liu,; Q. Liu,; P. Zhou, A semi-floating memory with 535% enhancement of refresh time by local field modulation. Adv. Funct. Mater. 2020, 30, 1908089.
[34]
W. H. Huang,; F. Wang,; L. Yin,; R. Q. Cheng,; Z. X. Wang,; M. G. Sendeku,; J. J. Wang,; N. N. Li,; Y. Y. Yao,; J. He, Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 2020, 32, 1908040.
[35]
T. Liu,; D. Xiang,; Y. Zheng,; Y. N. Wang,; X. Y. Wang,; L. Wang,; J. He,; L. Liu,; W. Chen, Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv. Mater. 2018, 30, 1804470.
[36]
J. L. Wang,; X. M. Zou,; X. H. Xiao,; L. Xu,; C. L. Wang,; C. Z. Jiang,; J. C. Ho,; T. Wang,; J. C. Li,; L. Liao, Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. Small 2015, 11, 208-213.
[37]
E. Z. Zhang,; W. Y. Wang,; C. Zhang,; Y. B. Jin,; G. D. Zhu,; Q. Q. Sun,; D. W. Zhang,; P. Zhou,; F. X. Xiu, Tunable charge-trap memory based on few-layer MoS2. ACS Nano 2015, 9, 612-619.
[38]
D. Lee,; E. Hwang,; Y. Lee,; Y. Choi,; J. S. Kim,; S. Lee,; J. H. Cho, Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 2016, 28, 9196-9202.
[39]
Q. Feng,; F. G. Yan,; W. G. Luo,; K. Y. Wang, Charge trap memory based on few-layer black phosphorus. Nanoscale 2016, 8, 2686-2692.
[40]
Z. H. Zhang,; Z. W. Wang,; T. Shi,; C. Bi,; F. Rao,; Y. M. Cai,; Q. Liu,; H. Q. Wu,; P. Zhou, Memory materials and devices: From concept to application. InfoMat 2020, 2, 261-290.
[41]
D. Li,; X. J. Wang,; Q. C. Zhang,; L. P. Zou,; X. F. Xu,; Z. X. Zhang, Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv. Funct. Mater. 2015, 25, 7360-7365.
[42]
L. Ju,; J. Velasco, Jr.; E. Huang,; S. Kahn,; C. Nosiglia,; H. Z. Tsai,; W. Yang,; T. Taniguchi,; K. Watanabe,; Y. Zhang, et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 2014, 9, 348-352.
[43]
E. X. Wu,; Y. Xie,; J. Zhang,; H. Zhang,; X. D. Hu,; J. Liu,; C. W. Zhou,; D. H. Zhang, Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 2019, 5, eaav3430.
[44]
D. Jariwala,; S. L. Howell,; K. S. Chen,; J. Kang,; V. K. Sangwan,; S. A. Filippone,; R. Turrisi,; T. J. Marks,; L. J. Lauhon,; M. C. Hersam, Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett. 2016, 16, 497-503.
[45]
B. W. H. Baugher,; H. O. H. Churchill,; Y. F. Yang,; P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.
[46]
R. Cheng,; D. H. Li,; H. L. Zhou,; C. Wang,; A. X. Yin,; S. Jiang,; Y. Liu,; Y. Chen,; Y. Huang,; X. F. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590-5597.
[47]
J. S. Miao,; X. W. Liu,; K. Jo,; K. He,; R. Saxena,; B. Song,; H. Q. Zhang,; J. L. He,; M. G. Han,; W. D. Hu, et al. Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces. Nano Lett. 2020, 20, 2907-2915.
[48]
D. Jariwala,; T. J. Marks,; M. C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.
[49]
C. Hu,; X. J. Wang,; B. Song, High-performance position-sensitive detector based on the lateral photoelectrical effect of two-dimensional materials. Light Sci. Appl. 2020, 9, 88.
[50]
M. R. Rosenberger,; H. J. Chuang,; K. M. McCreary,; C. H. Li,; B. T. Jonker, Electrical characterization of discrete defects and impact of defect density on photoluminescence in monolayer WS2. ACS Nano 2018, 12, 1793-1800.
[51]
M. R. Rosenberger,; H. J. Chuang,; K. M. McCreary,; A. T. Hanbicki,; S. V. Sivaram,; B. T. Jonker, Nano-“squeegee” for the creation of clean 2D material interfaces. ACS Appl. Mater. Interfaces 2018, 10, 10379-10387.
[52]
F. Wu,; Q. Li,; P. Wang,; H. Xia,; Z. Wang,; Y. Wang,; M. Luo,; L. Chen,; F. S. Chen,; J. S. Miao, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.
Nano Research
Pages 3445-3451
Cite this article:
Wu E, Xie Y, Wang S, et al. Non-volatile programmable homogeneous lateral MoTe2 junction for multi-bit flash memory and high-performance optoelectronics. Nano Research, 2020, 13(12): 3445-3451. https://doi.org/10.1007/s12274-020-3041-0
Topics:

906

Views

11

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 16 June 2020
Revised: 05 August 2020
Accepted: 06 August 2020
Published: 15 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return