AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction

Zezhou Zhu1,3,§Xiaoxia Li2,§Yunteng Qu1Fangyao Zhou1Zhiyuan Wang1Wenyu Wang1Changming Zhao1Huijuan Wang4Liqiang Li1,3Yagang Yao3( )Qun Zhang2( )Yuen Wu1( )
School of Nano-Tech and Nano-Bionics, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China

§ Zezhou Zhu and Xiaoxia Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Metal sulfide based materials as photocatalysts for energy conversion are essential to produce value-added chemical fuels, but their intrinsically slow carrier dynamics and low activity are yet to be resolved. Herein, we developed a unique heterogeneously nanostructured ZnIn2S4-CdS heterostructure that involves zero-dimensional (0D) CdS quantum dots uniformly confined on three-dimensional (3D) ZnIn2S4 nanoflowers, which achieves an excellent catalytic performance of CO2 photoconversion under visible-light irradiation. The obtained hierarchical heterostructure can significantly enhance the light harvesting, shorten the migration distance of carriers, and obviously accelerate the transport of electrons. As evidenced by the ultrafast transient absorption spectroscopy, the formed interface can effectively facilitate charge separation and transport. This work opens up a new avenue to carefully design the elaborate heterostructures for achieving optimal charge separation efficiency by lowering interfacial kinetic barriers and energy losses at the interface.

Electronic Supplementary Material

Download File(s)
12274_2020_3045_MOESM1_ESM.pdf (5.8 MB)

References

[1]
X. Li,; J. G. Yu,; M. Jaroniec,; X. B. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.
[2]
P. Zhang,; X. W. Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. 2019, 31, 1900281.
[3]
J. W. Fu,; K. X. Jiang,; X. Q. Qiu,; J. G. Yu,; M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222-243.
[4]
J. J. Shan,; F. Raziq,; M. Humayun,; W. Zhou,; Y. Qu,; G. F. Wang,; Y. D. Li, Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2017, 219, 10-17.
[5]
N. Nie,; L. Y. Zhang,; J. W. Fu,; B. Cheng,; J. G. Yu, Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. 2018, 441, 12-22.
[6]
Q. Li,; S. C. Wang,; Z. X. Sun,; Q. J. Tang,; Y. Q. Liu,; L. Z. Wang,; H. Q. Wang,; Z. B. Wu, Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749-2759.
[7]
N. N. Vu,; S. Kaliaguine,; T. O. Do, Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv. Funct. Mater. 2019, 29, 1901825.
[8]
S. F. Ji,; Y. Qu,; T. Wang,; Y. J. Chen,; G. F. Wang,; X. Li,; C. J. Dong,; Q. Y. Chen,; W. Y. Zhang,; Z. D. Zhang, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[9]
J. Bian,; J. N. Feng,; Z. Q. Zhang,; Z. J. Li,; Y. H. Zhang,; Y. D. Liu,; S. Ali,; Y. Qu,; L. L. Bai,; J. J. Xie, et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Agnew. Chem., Int. Ed. 2019, 58, 10873-10878.
[10]
Y. J. Ma,; Q. Tang,; W. Y. Sun,; Z. Y. Yao,; W. H. Zhu,; T. Li,; J. Y. Wang, Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Appl. Catal. B: Environ. 2020, 270, 118856.
[11]
M. Tahir,; B. Tahir,; N. A. S. Amin,; Z. Y. Zakaria, Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/ TiO2 NWs core/shell hetero-junction under UV and visible light. J. CO2 Util. 2017, 18, 250-260.
[12]
S. Y. Zhu,; W. R. Liao,; M. Y. Zhang,; S. J. Liang, Design of spatially separated Au and CoO dual cocatalysts on hollow TiO2 for enhanced photocatalytic activity towards the reduction of CO2 to CH4. Chem. Eng. J. 2019, 361, 461-469.
[13]
Z. Z. Lou,; P. Zhang,; J. Li,; X. G. Yang,; B. B. Huang,; B. J. Li, Plasmonic heterostructure TiO2-MCs/WO3-x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.
[14]
Q. Q. Bi,; J. W. Wang,; J. X. Lv,; J. Wang,; W. Zhang,; T. B. Lu, Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst. ACS Catal. 2018, 8, 11815-11821.
[15]
Z. Z. Zhu,; Y. Han,; C. P. Chen,; Z. X. Ding,; J. L. Long,; Y. D. Hou, Reduced graphene oxide-cadmium sulfide nanorods decorated with silver nanoparticles for efficient photocatalytic reduction carbon dioxide under visible light. ChemCatChem 2018, 10, 1627-1634.
[16]
Y. L. Men,; Y. You,; Y. X. Pan,; H. C. Gao,; Y. Xia,; D. G. Cheng,; J. Song,; D. X. Cui,; N. Wu,; Y. T. Li, et al. Selective CO evolution from photoreduction of CO2 on a metal-carbide-based composite catalyst. J. Am. Chem. Soc. 2018, 140, 13071-13077.
[17]
H. Y. Wang,; R. Hu,; Y. J. Lei,; Z. Y. Jia,; G. L. Hu,; C. B. Li,; Q. Gu, Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal. Sci. Technol. 2020, 10, 2821-2829.
[18]
J. N. Qin,; S. B. Wang,; H. Ren,; Y. D. Hou,; X. C. Wang, Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B: Environ. 2015, 179, 1-8.
[19]
J. G. Yu,; K. Wang,; W. Xiao,; B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 11492-11501.
[20]
S. F. Tian,; S. D. Chen,; X. T. Ren,; Y. Q. Hu,; H. Y. Hu,; J. J. Sun,; F. Bai, An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[21]
S. N. Talapaneni,; G. Singh,; I. Y. Kim,; K. AlBahily,; A. H. Al-Muhtaseb,; A. S. Karakoti,; E. Tavakkoli,; A. Vinu, Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.
[22]
J. X. Shen,; Y. Z. Li,; H. Y. Zhao,; K. Pan,; X. Li,; Y. Qu,; G. F. Wang,; D. S. Wang, Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931-1936.
[23]
Y. D. Hou,; A. B. Laursen,; J. S. Zhang,; G. G. Zhang,; Y. S. Zhu,; X. C. Wang,; S. Dahl,; I. Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621-3625.
[24]
B. Xu,; P. L. He,; H. L. Liu,; P. P. Wang,; G. Zhou,; X. Wang, A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Agnew. Chem., Int. Ed. 2014, 53, 2339-2343.
[25]
H. F. Lin,; Y. Y. Li,; H. L. Li,; X. Wang, Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377-1392.
[26]
X. D. Wang,; Y. H. Huang,; J. F. Liao,; Y. Jiang,; L. Zhou,; X. Y. Zhang,; H. Y. Chen,; D. B. Kuang, In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434-13441.
[27]
S. F. Tang,; X. P. Yin,; G. Y. Wang,; X. L. Lu,; T. B. Lu, Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457-462.
[28]
S. B. Wang,; Y. Wang,; S. Q. Zang,; X. W. Lou, Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2020, 4, 1900586.
[29]
S. W. Cao,; B. J. Shen,; T. Tong,; J. W. Fu,; J. G. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.
[30]
H. Wang,; X. D. Zhang,; Y. Xie, Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R: Rep. 2018, 130, 1-39.
[31]
X. C. Jiao,; Z. W. Chen,; X. D. Li,; Y. F. Sun,; S. Gao,; W. S. Yan,; C. M. Wang,; Q. Zhang,; Y. Lin,; Y. Luo, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586-7594.
[32]
X. Wang,; J. Lv,; J. X. Zhang,; X. L. Wang,; C. Z. Xue,; G. Q. Bian,; D. S. Li,; Y. Wang,; T. Wu, Hierarchical heterostructure of SnO2 confined on CuS nanosheets for efficient electrocatalytic CO2 reduction. Nanoscale 2020, 12, 772-784.
[33]
Z. L. Xu,; C. S. Zhuang,; Z. J. Zou,; J. Y. Wang,; X. C. Xu,; T. Y. Peng, Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 2017, 10, 2193-2209.
[34]
J. Xiong,; P. Song,; J. Di,; H. M. Li, Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Appl. Catal. B: Environ. 2019, 256, 117788.
[35]
A. Li,; T. Wang,; C. C. Li,; Z. Q. Huang,; Z. B. Luo,; J. L. Gong, Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to methanol. Agnew. Chem., Int. Ed. 2019, 58, 3804-3808.
[36]
M. Q. Yang,; Y. J. Xu,; W. H. Lu,; K. Y. Zeng,; H. Zhu,; Q. H. Xu,; G. W. Ho, Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.
[37]
T. Wang,; Y. Y. Chai,; D. K. Ma,; W. Chen,; W. W. Zheng,; S. M. Huang, Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699-2711.
[38]
H. Y. Li,; X. Z. Liu,; S. M. Chen,; D. R. Yang,; Q. Zhang,; L. Song,; H. Xiao,; Q. H. Zhang,; L. Gu,; X. Wang, Edge-exposed molybdenum disulfide with N-doped carbon hybridization: A hierarchical hollow electrocatalyst for carbon dioxide reduction. Adv. Energy Mater. 2019, 9, 1900072.
[39]
S. B. Wang,; B. Y. Guan,; X. W. Lou, Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037-5040.
[40]
Y. Q. He,; H. Rao,; K. P. Song,; J. X. Li,; Y. Yu,; Y. Lou,; C. G. Li,; Y. Han,; Z. Shi,; S. H. Feng, 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.
[41]
Y. Xia,; B. Cheng,; J. J. Fan,; J. G. Yu,; G. Liu, Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552-565.
[42]
M. Zhou,; S. B. Wang,; P. J. Yang,; C. J. Huang,; X. C. Wang, Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928-4936.
[43]
A. H. Yan,; X. W. Shi,; F. Huang,; M. Fujitsuka,; T. Majima, Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer. Appl. Catal. B: Environ. 2019, 250, 163-170.
[44]
H. Li,; W. J. Li,; W. Li,; M. F. Chen,; R. Snyders,; C. Bittencourt,; Z. H. Yuan, Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 2020, 13, 583-590.
[45]
S. B. Wang,; B. Y. Guan,; Y. Lu,; X. W. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305-17308.
[46]
H. Q. Xu,; S. Z. Yang,; X. Ma,; J. E. Huang,; H. L. Jiang, Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615-11621.
[47]
S. Q. Zhang,; X. Liu,; C. B. Liu,; S. L. Luo,; L. L. Wang,; T. Cai,; Y. X. Zeng,; J. L. Yuan,; W. Y. Dong,; Y. Pei, et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751-758.
[48]
J. Wang,; T. Xia,; L. Wang,; X. S. Zheng,; Z. M. Qi,; C. Gao,; J. F. Zhu,; Z. Q. Li,; H. X. Xu,; Y. J. Xiong, Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447-16451.
[49]
M. Zhou,; S. B. Wang,; P. J. Yang,; Z. S. Luo,; R. S. Yuan,; A. M. Asiri,; M. Wakeel,; X. C. Wang, Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem. —Eur. J. 2018, 24, 18529-18534.
[50]
L. Ye,; Z. H. Li, Rapid microwave-assisted syntheses of reduced graphene oxide (RGO)/ZnIn2S4 microspheres as superior noble-metal-free photocatalyst for hydrogen evolutions under visible light. Appl. Catal. B: Environ. 2014, 160-161, 552-557.
[51]
Y. Wu,; H. Wang,; W. G. Tu,; S. Y. Wu,; J. W. Chew, Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1-5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B: Environ. 2019, 256, 117810.
[52]
Y. G. Chao,; P. Zhou,; N. Li,; J. P. Lai,; Y. Yang,; Y. L. Zhang,; Y. H. Tang,; W. X. Yang,; Y. P. Du,; D. Su, et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 2019, 31, 1807226.
[53]
D. N. Liu,; D. Y. Chen,; N. J. Li,; Q. F. Xu,; H. Li,; J. H. He,; J. M. Lu, Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519-4524.
[54]
L. Q. Shao,; D. L. Jiang,; P. Xiao,; L. M. Zhu,; S. C. Meng,; M. Chen, Enhancement of g-C3N4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Appl. Catal. B: Environ. 2016, 198, 200-210.
[55]
M. Xiao,; Z. L. Wang,; M. Q. Lyu,; B. Luo,; S. C. Wang,; G. Liu,; H. M. Cheng,; L. Z. Wang, Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
[56]
Y. Z. Wei,; J. Y. Wang,; R. B. Yu,; J. W. Wan,; D. Wang, Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 1422-1426.
[57]
Y. K. Zhu,; C, X. Lv,; Z. C. Yin,; J. Ren,; X. F. Yang,; C. L. Dong,; H. W. Liu,; R. S. Cai,; Y. C. Huang,; W. Theis, et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868-873.
[58]
P. Zhang,; S. B. Wang,; B. Y. Guan,; X. W. Lou, Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164-168.
[59]
H. T. Li,; X. Y. Zhang,; D. R. MacFarlane, Carbon quantum dots/ Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.
[60]
Z. P. Zeng,; Y. B. Yan,; J. Chen,; P. Zan,; Q. H. Tian,; P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 2019, 29, 1806500.
[61]
Z. Z. Zhu,; J. N. Qin,; M. Jiang,; Z. X. Ding,; Y. D. Hou, Enhanced selective photocatalytic CO2 reduction into CO over Ag/CdS nanocomposites under visible light. Appl. Surf. Sci. 2017, 391, 572-579.
[62]
X. X. Chang,; T. Wang,; P. Zhang,; J. J. Zhang,; A. Li,; J. L. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356-8359.
[63]
Y. Z. Wei,; J. W. Wan,; N. L. Yang,; Y. Yang,; Y. W. Ma,; S. C. Wang,; J. Y. Wang,; R. B. Yu,; L. Gu, L. H. Wang, et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev., in press, .
[64]
F. C. Lei,; L. Zhang,; Y. F. Sun,; L. Liang,; K. T. Liu,; J. Q. Xu,; Q. Zhang,; B. C. Pan,; Y. Lu,; Y. Xie, Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266-9270.
[65]
W. L. Yang,; L. Zhang,; J. F. Xie,; X. D. Zhang,; Q. H. Liu,; T. Yao,; S. Q. Wei,; Q. Zhang,; Y. Xie, Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6716-6720.
[66]
W. Shao,; L. Wang,; H. Wang,; Z. Zhao,; X. D. Zhang,; S. L. Jiang,; S. C. Chen,; X. S. Sun,; Q. Zhang,; Y. Xie, Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance. J. Phys. Chem. Lett. 2019, 10, 2904-2910.
[67]
X. Deng,; R. Li,; S. K. Wu,; L. Wang,; J. H. Hu,; J. Ma,; W. B. Jiang,; N. Zhang, X. S. Zheng,; C. Gao, et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924-10929.
[68]
J. L. Lin,; Y. D. Hou,; Y. Zheng,; X. C. Wang Integration of [(Co(bpy)3]2+ electron mediator with heterogeneous photocatalysts for CO2 conversion. Chem. Asian J. 2014, 9, 2468-2474.
[69]
L. J. Huang,; B. F. Li,; B. Su,; Z. Xiong,; C. J. Zhang,; Y. D. Hou,; Z. X. Ding,; S. B. Wang, Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light. J. Mater. Chem. A 2020, 8, 7177-7183.
[70]
G. X. Zhao,; W. Zhou,; Y. B. Sun,; X. K. Wang,; H. M. Liu,; X. G. Meng,; K. Chang,; J. H. Ye Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Appl. Catal. B: Envirmon. 2018, 226, 252-257.
[71]
B. Su,; L. J. Huang,; Z. Xiong,; Y. C. Yang,; Y. D. Hou,; Z. X. Ding,; S. B. Wang, Branch-like ZnS-DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction. J. Mater. Chem. A 2019, 7, 26877-26883.
Nano Research
Pages 81-90
Cite this article:
Zhu Z, Li X, Qu Y, et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Research, 2021, 14(1): 81-90. https://doi.org/10.1007/s12274-020-3045-9
Topics:

961

Views

93

Crossref

0

Web of Science

93

Scopus

11

CSCD

Altmetrics

Received: 09 July 2020
Revised: 03 August 2020
Accepted: 07 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return