AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries

Qiulong Li1,2,5,§Qichong Zhang3,§Zhengyu Zhou3,4,§Wenbin Gong3Chenglong Liu3,4Yongbao Feng1Guo Hong6,7Yagang Yao2,3,4( )
College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China
Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
Institute of Applied Physics and Materials Engineering, University of Macau. Avenida da Universidade, Taipa, Macau SAR 999078, China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China

§ Qiulong Li, Qichong Zhang, and Zhengyu Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Neutral aqueous rechargeable Co3O4//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices. To meet the increasing demand for a means of powering wearable and portable devices, the development of a high-performance fiber-shaped Co//Zn battery would be highly desirable. However, the intrinsically poor conductivity of Co3O4 significantly restricts the application of these high-capacity and high-rate aqueous rechargeable battery. Encouragingly, density functional theory (DFT) calculations demonstrate that the substitution of Zn for Co3+ leads to an insulator-metal transition in the Zn-doped Co3O4 (Zn-Co3O4). In this study, we used metallic Zn-Co3O4 nanowire arrays (NWAs) as a novel binder-free cathode to successfully fabricate an all-solid-state fiber-shaped aqueous rechargeable (AFAR) Co//Zn battery. The resulting fiber-shaped Co//Zn battery takes advantage of the enhanced conductivity, increased capacity, and improved rate capability of Zn-Co3O4 NWAs to yield a remarkable capacity of 1.25 mAh·cm-2 at a current density of 0.5 mA·cm-2, extraordinary rate capability (60.8% capacity retention at a high current density of 20 mA·cm-2) and an admirable energy density of 772.6 mWh·cm-3. Thus, the successful construction of Zn-Co3O4 NWAs provides valuable insights into the design of high-capacity and high-rate cathode materials for aqueous rechargeable high-voltage batteries.

Electronic Supplementary Material

Download File(s)
12274_2020_3046_MOESM1_ESM.pdf (4.1 MB)

References

[1]
Y. Huang,; W. S. Ip,; Y. Y. Lau,; J. F. Sun,; J. Zeng,; N. S. S. Yeung,; W. S. Ng,; H. F. Li,; Z. X. Pei,; Q. Xue, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 2017, 11, 8953-8961.
[2]
J. P. Liu,; C. Guan,; C. Zhou,; Z. Fan,; Q. Q. Ke,; G. Z. Zhang,; C. Liu,; J. Wang, A flexible Quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 2016, 28, 8732-8739.
[3]
Y. X. Zeng,; Y. Meng,; Z. Z. Lai,; X. Y. Zhang,; M. H. Yu,; P. P. Fang,; M. M. Wu,; Y. X. Tong,; X. H. Lu, An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode. Adv. Mater. 2017, 29, 1702698.
[4]
Q. C. Zhang,; Z. Y. Zhou,; Z. H. Pan,; J. Sun,; B. He,; Q. L. Li,; T. Zhang,; J. X. Zhao,; L. Tang,; Z. X. Zhang, et al. All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy-storage device. Adv. Sci. 2018, 5, 1801462.
[5]
C. Guan,; W. Zhao,; Y. T. Hu,; Q. Q. Ke,; X. Li,; H. Zhang,; J. Wang, High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater. 2016, 6, 1601034.
[6]
J. Zhao,; Z. J. Li,; X. C. Yuan,; Z. Yang,; M. Zhang,; A. Meng,; Q. D. Li, A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 2018, 8, 1702787.
[7]
H. F. Li,; Z. X. Liu,; G. J. Liang,; Y. Huang,; Y. Huang,; M. S. Zhu,; Z. X. Pei,; Q. Xue,; Z. J. Tang,; Y. K. Wang, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140-3148.
[8]
Z. Y. Zhou,; Q. C. Zhang,; J. Sun,; B. He,; J. B. Guo,; Q. L. Li,; C. W. Li,; L. Y. Xie,; Y. G. Yao, Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 2018, 12, 9333-9341.
[9]
Y. X. Zeng,; Z. Q. Lin,; Y. Meng,; Y. C. Wang,; M. H. Yu,; X. H. Lu,; Y. X. Tong, Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv. Mater. 2016, 28, 9188-9195.
[10]
Y. X. Zeng,; Z. Q. Lin,; Z. F. Wang,; M. M. Wu,; Y. X. Tong,; X. H. Lu, In situ activation of 3D porous Bi/Carbon architectures: Toward high-energy and stable nickel-bismuth batteries. Adv. Mater. 2018, 30, 1707290.
[11]
Z. M. Fan,; Y. S. Wang,; Z. M. Xie,; D. L. Wang,; Y. Yuan,; H. J. Kang,; B. L. Su,; Z. J. Cheng,; Y. Y. Liu, Modified mxene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5, 1800750.
[12]
S. D. Liu,; Y. Yin,; K. S. Hui,; K. N. Hui,; S. C. Lee,; S. C. Jun, High-performance flexible quasi-solid-state supercapacitors realized by molybdenum dioxide@nitrogen-doped carbon and copper cobalt sulfide tubular nanostructures. Adv. Sci. 2018, 5, 1800733.
[13]
L. T. Ma,; S. M. Chen,; D. H. Wang,; Q. Yang,; F. N. Mo,; G. J. Liang,; N. Li,; H. Y. Zhang,; J. A. Zapien,; C. Y. Zhi, Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.
[14]
Q. L. Li,; Q. C. Zhang,; J. Sun,; C. L. Liu,; J. B. Guo,; B. He,; Z. Y Zhou,; P. Man,; C. W. Li,; L. Y. Xie, et al. All hierarchical core-shell heterostructures as novel binder-free electrode materials for ultrahigh-energy-density wearable asymmetric supercapacitors. Adv. Sci. 2019, 6, 1801379.
[15]
Q. C. Zhang,; J. Sun,; Z. H. Pan,; J. Zhang,; J. X. Zhao,; X. N. Wang,; C. X. Zhang,; Y. G. Yao,; W. B. Lu,; Q. W. Li, et al. Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39, 219-228.
[16]
Q. C. Zhang,; X. N. Wang,; Z. H. Pan,; J. Sun,; J. X. Zhao,; J. Zhang,; C. X. Zhang,; L. Tang,; J. Luo,; B. Song, et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 2017, 17, 2719-2726.
[17]
Y. Q. Guo,; X. F. Hong,; Y. Wang,; Q. Li,; J. S. Meng,; R. T. Dai,; X. Liu,; L. He,; L. Q. Mai, Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 2019, 29, 1809004.
[18]
H. P. Zhao,; L. Liu,; R. Vellacheri,; Y. Lei, Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv. Sci. 2017, 4, 1700188.
[19]
J. X. Zhao,; Y. Zhang,; Y. N. Huang,; J. X. Xie,; X. X. Zhao,; C. W. Li,; J. Y. Qu,; Q. C. Zhang,; J. Sun,; B. He, et al. 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv. Sci. 2018, 5, 1801114.
[20]
Q. Y. Gui,; L. X. Wu,; Y. Y. Li,; J. P. Liu, Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100 000 times. Adv. Sci. 2019, 6, 1802067.
[21]
H. Tan,; Z. H. Liu,; D. L. Chao,; P. Hao,; D. D. Jia,; Y. H. Sang,; H. Liu,; H. J. Fan, Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv. Energy Mater. 2018, 8, 1800685.
[22]
Y. Huang,; Z. Li,; Z. X. Pei,; Z. X. Liu,; H. F. Li,; M. S. Zhu,; J. Fan,; Q. B. Dai,; M. D. Zhang,; L. M. Dai, et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: The role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 2018, 8, 1802288.
[23]
Q. L. Li,; Q. C. Zhang,; C. L. Liu,; J. Sun,; J. B. Guo,; J. Zhang,; Z. Y. Zhou,; B. He,; Z. H. Pan,; Y. G. Yao, Flexible all-solid-state fiber-shaped Ni-Fe batteries with high electrochemical performance. J. Mater. Chem. A 2019, 7, 520-530.
[24]
Y. Zhang,; L. Wang,; Z. Y. Guo,; Y. F. Xu,; Y. G. Wang,; H. S. Peng, High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55, 4487-4491.
[25]
Y. F. Xu,; Y. Zhang,; Z. Y. Guo,; J. Ren,; Y. G. Wang,; H. S. Peng, Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390-15394.
[26]
Y. F. Xu,; Y. Zhao,; J. Ren,; Y. Zhang,; H. S. Peng, An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem., Int. Ed. 2016, 55, 7979-7982.
[27]
Y. Zhang,; Y. H. Wang,; L. Wang,; C. M. Lo,; Y. Zhao,; Y. D. Jiao,; G. F. Zheng,; H. S. Peng, A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 2016, 4, 9002-9008.
[28]
Y. B. Wang,; C. J. Chen,; H. Xie,; T. T. Gao,; Y. G. Yao,; G. Pastel,; X. G. Han,; Y. J. Li,; J. P. Zhao,; K. Fu, et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.
[29]
T. Hoshide,; Y. C. Zheng,; J. Y. Hou,; Z. Q. Wang,; Q. W. Li,; Z. G. Zhao,; R. Z. Ma,; T. Sasaki,; F. X. Geng, Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 2017, 17, 3543-3549.
[30]
L. J. Lu,; Y. J. Hu,; K. Dai, The advance of fiber-shaped lithium ion batteries. Mater. Today Chem. 2017, 5, 24-33.
[31]
C. Dillard,; S. H. Chung,; A. Singh,; A. Manthiram,; V. Kalra, Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium-sulfur batteries. Mater. Today Energy 2018, 9, 336-344.
[32]
G. X. Qu,; J. L. Cheng,; X. D. Li,; D. M. Yuan,; P. N. Chen,; X. L. Chen,; B. Wang,; H. S. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646-3652.
[33]
J. Cherusseri,; K. K. Kar, Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A 2016, 4, 9910-9922.
[34]
D. S. Wu,; G. M. Zhou,; E. Mao,; Y. M. Sun,; B. F. Liu,; L. Wang,; J. Y. Wang,; F. F. Shi,; Y. Cui, A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Res. 2020, 13, 1383-1388.
[35]
W. W. Sun,; Y. J. Li,; S. K. Liu,; Q. P. Guo,; Y. H. Zhu,; X. B. Hong,; C. M. Zheng,; K. Xie, Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143-2148.
[36]
J. X. Hu,; Y. Y. Xie,; J. Q. Zheng,; Y. Q. Lai,; Z. A. Zhang, Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 2020, .
[37]
M. Li,; J. S. Meng,; Q. Li,; M. Huang,; X. Liu,; K. A. Owusu,; Z. Liu,; L. Q. Mai, Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co Batteries. Adv. Funct. Mater. 2018, 28, 1802016.
[38]
X. W. Wang,; F. X. Wang,; L. Y. Wang,; M. X. Li,; Y. F. Wang,; B. W. Chen,; Y. S. Zhu,; L. J. Fu,; L. S. Zha,; L. X. Zhang, et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 2016, 28, 4904-4911.
[39]
L. T. Ma,; S. M. Chen,; Z. X. Pei,; H. F. Li,; Z. F. Wang,; Z. X. Liu,; Z. J. Tang,; J. A. Zapien,; C. Y. Zhi, Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597-8605.
[40]
P. Tan,; B. Chen,; H. R. Xu,; W. Z. Cai,; W. He,; M. L. Liu,; Z. P. Shao,; M. Ni, Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14, 1800225.
[41]
L. T. Ma,; S. M. Chen,; H. F. Li,; Z. H. Ruan,; Z. J. Tang,; Z. X. Liu,; Z. F. Wang,; Y. Huang,; Z. X. Pei,; J. A. Zapien, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521-2530.
[42]
D. Z. Kong,; J. S. Luo,; Y. L. Wang,; W. N. Ren,; T. Yu,; Y. S. Luo,; Y. P. Yang,; C. W. Cheng, Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815-3826.
[43]
G. M. Li,; M. Z. Chen,; Y. Ouyang,; D. Yao,; L. Lu,; L. Wang,; X. F. Xia,; W. Lei,; S. M. Chen, et al. Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 2019, 469, 941-950.
[44]
H. Y. Chen,; J. P. Wang,; F. Liao,; X. R. Han,; C. J. Xu,; Y. F. Zhang, Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceram. Int. 2019, 45, 8008-8016.
[45]
F. Švegl,; B. Orel,; I. Grabec-Švegl,; V. Kaučič, Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochim. Acta 2000, 45, 4359-4371.
[46]
Q. Zhang,; W. Xu,; J. Sun,; Z. Pan,; J. Zhao,; X. Wang,; J. Zhang,; P. Man,; J. Guo,; Z. Zhou, et al. Constructing ultrahigh-capacity zinc-nickel-cobalt Oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett. 2017, 17, 7552-7560.
[47]
V. R. Shinde,; S. B. Mahadik,; T. P. Gujar,; C. D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 2006, 252, 7487-7492.
[48]
J. Sun,; P. Man,; Q. C. Zhang,; B. He,; Z. Y. Zhou,; C. W. Li,; X. N. Wang,; J. B. Guo,; J. X. Zhao,; L. Y. Xie, et al. Hierarchically-structured Co3O4 nanowire arrays grown on carbon nanotube fibers as novel cathodes for high-performance wearable fiber-shaped asymmetric supercapacitors. Appl. Surf. Sci. 2018, 447, 795-801.
[49]
X. Chen,; B. Liu,; C. Zhong,; Z. Liu,; J. Liu,; L. Ma,; Y. D. Deng,; X. P. Han,; T. P. Wu, et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display. Adv. Energy Mater. 2017, 7, 1700779.
[50]
T. Liu,; L. Y. Zhang,; W. You,; J. G. Yu, Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 2018, 14, 1702407.
[51]
C. S. Yan,; G. Chen,; X. Zhou,; J. X. Sun,; C. D. Lv, Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428-1436.
[52]
Q. L. Li,; Q. C. Zhang,; C. L. Liu,; Z. Y. Zhou,; C. W. Li,; B. He,; P. Man,; X. Wang,; Y. G. Yao, Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J. Mater. Chem. A 2019, 7, 12997-13006.
[53]
C. W. Li,; Q. C. Zhang,; E. Songfeng,; T. T. Li,; Z. Z. Zhu,; B. He,; Z. Y. Zhou,; P. Man,; Q. L. Li,; Y. G. Yao, An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy. J. Mater. Chem. A 2019, 7, 2034-2040.
[54]
Y. X. Zeng,; X. Y. Zhang,; Y. Meng,; M. H. Yu,; J. N. Yi,; Y. Q. Wu,; X. H. Lu,; Y. X. Tong, Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274.
[55]
D. Cheng,; Y. F. Yang,; J. L. Xie,; C. J. Fang,; G. Q. Zhang,; J. Xiong, Hierarchical NiCo2O4@NiMoO4 core-shell hybrid nanowire/ nanosheet arrays for high-performance pseudocapacitors. J. Mater. Chem. A 2015, 3, 14348-14357.
[56]
W. H. Zhu,; R. Z. Li,; P. Xu,; Y. Y. Li,; J. P. Liu, Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2 V voltage and high volumetric energy density. J. Mater. Chem. A 2017, 5, 22216-22223.
[57]
C. R. Zhu,; P. H. Yang,; D. L. Chao,; X. L. Wang,; X. Zhang,; S. Chen,; B. K. Tay,; H. Huang,; H. Zhang,; W. J. Mai, et al. All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 2015, 27, 4566-4571.
[58]
J. B. Guo,; Q. C. Zhang,; Q. L. Li,; J. Sun,; C. W. Li,; B. He,; Z. Y. Zhou,; L. Y. Xie,; M. X. Li,; Y. Yao, Rational design of hierarchical titanium Nitride@Vanadium pentoxide core-shell heterostructure fibrous electrodes for high-performance 1.6 V nonpolarity wearable supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 29705-29711.
Nano Research
Pages 91-99
Cite this article:
Li Q, Zhang Q, Zhou Z, et al. Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries. Nano Research, 2021, 14(1): 91-99. https://doi.org/10.1007/s12274-020-3046-8
Topics:

1001

Views

56

Crossref

0

Web of Science

54

Scopus

2

CSCD

Altmetrics

Received: 24 July 2020
Revised: 24 July 2020
Accepted: 10 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return