AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/carbon nanotube nanocomposite membranes

Ying Li1,2Wen Ning3Qingyu Peng2,4Minglong Yang2Dongyi Lei1Siyao Guo1Peng Liu3( )Kaili Jiang3Xiaodong He2,4( )Yibin Li2,4( )
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
National Key Laboratory of Science and Technology for National Defence on Advanced Composites in special Environments, Harbin Institute of Technology, Harbin 150080, China
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University & Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Shenzhen STRONG Advanced Materials Institute Ltd. Corp, Shenzhen 518000, China
Show Author Information

Graphical Abstract

Abstract

Actively tunable acoustic metamaterials have attracted ever increasing attention. However, their tunable frequency range is quite narrow (tens of Hz) even under ultrahigh applied voltage (about 1,000 V). Here, we report a superbroad-band actively tunable acoustic metamaterials with the bandwidth over 400 Hz under a low voltage. In the actively tunable acoustic metamaterials, the acoustic membrane is a laminated nanocomposite consisting of a poly (ethylene terephthalate) (PET) and super-aligned carbon nanotube (CNT) drawn from CNT forest array. The laminated nanocomposite membrane exhibits adjustable acoustic properties, whose modulus can be adjusted by applying external electric field. The maximum frequency bandwidth of PET/CNT nanocomposite membrane reaches 419 Hz when applying an external DC voltage of 60 V. Our actively tunable acoustic metamaterials with superbroad-band and lightweight show very promising foreground in noise reduction applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3048_MOESM1_ESM.pdf (911.7 KB)

References

[1]
Z. Y. Liu,; X. X. Zhang,; Y. W. Mao,; Y. Y. Zhu,; Z. Y. Yang,; C. T. Chan,; P. Sheng, Locally resonant sonic materials. Science 2000, 289, 1734-1736.
[2]
S. A. Cummer,; J. Christensen,; A. Alù, Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001.
[3]
S. H. Lee,; O. B. Wright, Origin of negative density and modulus in acoustic metamaterials. Phys. Rev. B. 2016, 93, 024302.
[4]
G. C. Ma,; X. Y. Fan,; F. Y. Ma,; J. de Rosny,; P. Sheng,; M. Fink, Towards anti-causal Green’s function for three-dimensional sub-diffraction focusing. Nat. Phys. 2018, 14, 608-612.
[5]
J. Mei,; G. C. Ma,; M. Yang,; Z. Y. Yang,; W. J. Wen,; P. Sheng, Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756.
[6]
M. Yang,; G. C. Ma,; Z. Y. Yang,; P. Sheng, Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 2013, 110, 134301.
[7]
Z. Y. Yang,; J. Mei,; M. Yang,; N. H. Chan,; P. Sheng, Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301.
[8]
C. Zhang,; X. H. Hu, Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability. Phys. Rev. Appl. 2016, 6, 064025.
[9]
H. Lissek,; R. Boulandet,; R. Fleury, Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption. J. Acoust. Soc. Am. 2011, 129, 2968-2978.
[10]
K. J. M. Bishop, Acoustic metamaterials: Living bandgaps. Nat. Mater. 2017, 16, 786-787.
[11]
S. Chen,; Y. C. Fan,; Q. H. Fu,; H. J. Wu,; Y. B. Jin,; J. B. Zheng,; F. L. Zhang, A review of tunable acoustic metamaterials. Appl. Sci. 2018, 8, 1480.
[12]
B. I. Popa,; S. A. Cummer, Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 2014, 5, 3398.
[13]
R. Fleury,; D. L. Sounas,; A. Alù, Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 174306.
[14]
A. Baz, The structure of an active acoustic metamaterial with tunable effective density. New J. Phys. 2009, 11, 123010.
[15]
X. Chen,; X. C. Xu,; S. G. Ai,; H. S. Chen,; Y. M. Pei,; X. M. Zhou, Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields. Appl. Phys. Lett. 2014, 105, 071913.
[16]
S. W. Xiao,; G. C. Ma,; Y. Li,; Z. Y. Yang,; P. Sheng, Active control of membrane-type acoustic metamaterial by electric field. Appl. Phys. Lett. 2015, 106, 091904.
[17]
Z. Chen,; C. Xue,; L. Fan,; S. Y. Zhang,; X. J. Li,; H. Zhang,; J. Ding, A tunable acoustic metamaterial with double-negativity driven by electromagnets. Sci. Rep. 2016, 6, 30254.
[18]
P. Wang,; F. Casadei,; S. C. Shan,; J. C. Weaver,; K. Bertoldi, Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 2014, 113, 014301.
[19]
K. H. Yu,; N. X. Fang,; G. L. Huang,; Q. M. Wang, Magnetoactive acoustic metamaterials. Adv. Mater. 2018, 30, 1706348.
[20]
Y. Li,; S. S. Wang,; Q. Y. Peng,; Z. W. Zhou,; Z. Y. Yang,; X. D. He,; Y. B. Li, Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Nanoscale 2019, 11, 16384-16392.
[21]
K. L. Jiang,; Q. Q. Li,; S. S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.
[22]
K. L. Jiang,; J. P. Wang,; Q. Q. Li,; L. Liu,; C. H. Liu,; S. S. Fan, Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.
[23]
L. J. Yan,; K. Wang,; S. Luo,; H. C. Wu,; Y. F. Luo,; Y. Yu,; K. L. Jiang,; Q. Q. Li,; S. S. Fan,; J. P. Wang, Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 4047-4057.
[24]
Y. Y. Wang,; Z. H. Zhou,; C. G. Zhou,; W. J. Sun,; J. F. Gao,; K. Dai,; D. X. Yan,; Z. M. Li, Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704-8712.
[25]
W. Ning,; Z. H. Wang,; P. Liu,; D. L. Zhou,; S. Y. Yang,; J. P. Wang,; Q. Q. Li,; S. S. Fan,; K. L. Jiang, Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136-1143.
[26]
J. Zhao,; L. J. Shen,; F. Liu,; P. Zhao,; Q. Huang,; H. Han,; L. M. Peng,; X. L. Liang, Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Res. 2020, 13, 1749-1755.
[27]
S. Joo,; I. J. Cho,; H. Seo,; H. F. Son,; H. Y. Sagong,; T. J. Shin,; S. Y. Choi,; S. Y. Lee,; K. J. Kim, Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382.
[28]
S. K. Burgess,; J. E. Leisen,; B. E. Kraftschik,; C. R. Mubarak,; R. M. Kriegel,; W. J. Koros, Chain mobility, thermal, and mechanical properties of poly (ethylene furanoate) compared to poly (ethylene terephthalate). Macromolecules 2014, 47, 1383-1391.
[29]
E. L. Heeley,; D. J. Hughes,; E. Crabb,; M. Kershaw,; O. Shebanova,; S. Leung,; B. Mayoral,; T. McNally, Structure evolution in poly (ethylene terephthalate) (PET)-Multi-walled carbon nanotube (MWCNT) composite films during in-situ uniaxial deformation. Polymer 2016, 92, 239-249.
[30]
L. Yuan,; Z. H. Wang,; S. Chen,; A. J. Gu,; G. Z. Liang,; G. Q. Chen, Reactive polymer-functionalized aligned multiwalled carbon nanotube bundles-induced porous poly (ethylene terephthalate) fibers. Ind. Eng. Chem. Res. 2019, 58, 10328-10340.
[31]
Y. Li,; L. Sun,; F. Xu,; S. S. Wang,; Q. Y. Peng,; Z. Y. Yang,; X. D. He,; Y. B. Li, Electromagnetic and acoustic double-shielding graphene-based metastructures. Nanoscale 2019, 11, 1692-1699.
[32]
X. B. Zhang,; K. L. Jiang,; C. Feng,; P. Liu,; L. Zhang,; J. Kong,; T. H. Zhang,; Q. Q. Li,; S. S. Fan, Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505-1510.
[33]
K. Liu,; Y. H. Sun,; L. Chen,; C. Feng,; X. F. Feng,; K. L. Jiang,; Y. G. Zhao,; S. S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700-705.
[34]
K. L. Zhu,; Y. F. Luo,; F. Zhao,; J. W. Hou,; X. W. Wang,; H. Ma,; H. Wu,; Y. G. Zhang,; K. L. Jiang,; S. S. Fan, et al. Free-standing, binder-free Titania/Super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426-3433.
[35]
O. Zhou,; R. M. Fleming,; D. W. Murphy,; C. H. Chen,; R. C. Haddon,; A. P. Ramirez,; S. H. Glarum, Defects in carbon nanostructures. Science 1994, 263, 1744-1747.
[36]
W. L. Ong,; Q. X. Low,; W. Huang,; J. A. van Kan,; G. W. Ho, Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications. J. Mater. Chem. 2012, 22, 8518-8524.
[37]
V. J. Cruz-Delgado,; C. A. Ávila-Orta,; A. B. Espinoza-Martínez,; J. M. Mata-Padilla,; S. G. Solis-Rosales,; A. F. Jalbout,; F. J. Medellín-Rodríguez,; B. S. Hsiao, Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer 2014, 55, 642-650.
[38]
H. Liu,; J. Z. Chen,; L. M. Chen,; Y. S. Xu,; X. H. Guo,; D. Y. Fang, Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification. ACS Sustainable Chem. Eng. 2016, 4, 3140-3150.
[39]
L. Huang,; Y. Huang,; J. J. Liang,; X. J. Wan,; Y. S. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675-684.
[40]
P. Kumar,; F. Shahzad,; S. G. Yu,; S. M. Hong,; Y. H. Kim,; C. M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494-500.
[41]
L. Camilli,; C. Pisani,; E. Gautron,; M. Scarselli,; P. Castrucci,; F. D’Orazio,; M. Passacantando,; D. Moscone,; M. De Crescenzi, A three-dimensional carbon nanotube network for water treatment. Nanotechnology 2014, 25, 065701.
[42]
R. Koizumi,; A. H. C. Hart,; G. Brunetto,; S. Bhowmick,; P. S. Owuor,; J. T. Hamel,; A. X. Gentles,; S. Ozden,; J. Lou,; R. Vajtai, et al. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon 2016, 110, 27-33.
[43]
Y. X. Lu, Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition. Appl. Surf. Sci. 2010, 256, 3554-3558.
[44]
A. Tarlani,; K. Narimani,; F. Mohammadipanah,; J. Hamedi,; H. Tahermansouri,; M. M. Amini, Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity. Appl. Surf. Sci. 2015, 341, 86-91.
[45]
W. Ao,; J. Ding,; L. Fan,; S. Y. Zhang, A robust actively-tunable perfect sound absorber. Appl. Phys. Lett. 2019, 115, 193506.
[46]
S. W. Xiao,; S. T. Tang,; Z. Yang, Voltage-tunable acoustic metasheet with highly asymmetric surfaces. Appl. Phys. Lett. 2017, 111, 194101.
Nano Research
Pages 100-107
Cite this article:
Li Y, Ning W, Peng Q, et al. Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/carbon nanotube nanocomposite membranes. Nano Research, 2021, 14(1): 100-107. https://doi.org/10.1007/s12274-020-3048-6
Topics:

865

Views

5

Crossref

0

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 23 June 2020
Revised: 02 August 2020
Accepted: 10 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return