AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors

Chi Zhang1,2Jing Ning1,2( )Boyu Wang1,2Haibin Guo1,2Xin Feng1,2Xue Shen1,2Yanqing Jia1,2Jianguo Dong1,2Dong Wang1,2Jincheng Zhang1,2( )Yue Hao1,2
The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi’an 710071, China
Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi’an 710071, China
Show Author Information

Graphical Abstract

Abstract

The emerging micro-nano-processing technologies have propelled significant advances in multifunctional systems that can perform multiple functions within a small volume through integration. Herein, we present an on-chip multifunctional system based on a 1T/2H-MoS2/graphene fishnet tube, where a micro-supercapacitor and a gas sensor are integrated. A hybrid three-dimensional stereo nanostructure, including MoS2 nanosheets and graphene fishnet tubes, provides K+ ions with a short diffusion pathway and more active sites. Owing to the large layer spacing of 1T-MoS2 promoting fast reversible diffusion, the on-chip micro-supercapacitor exhibits excellent electrochemical properties, including an areal capacitance of 0.1 F·cm-2 (1 mV·s-1). The variation in the conductivity of 2H-MoS2 when ammonia molecules are adsorbed as derived from the first-principles calculations proves the Fermi level-changes theory. Driven by a micro-supercapacitor, the responsivity of the gas sensor can reach 55.7% at room temperature (27 °C). The multifunctional system demonstrates the possibility of achieving a two-dimensional integrated system for wearable devices and wireless sensor networks in the future.

Electronic Supplementary Material

Download File(s)
12274_2020_3052_MOESM1_ESM.pdf (3.2 MB)

References

[1]
J. Yun,; Y. Lim,; H. Lee,; G. Lee,; H. Park,; S. Y. Hong,; S. W. Jin,; Y. H. Lee,; S. S. Lee,; J. S. Ha, A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv. Funct. Mater. 2017, 27, 1700135.
[2]
C. Song,; J. Yun,; H. Lee,; H. Park,; Y. R. Jeong,; G. Lee,; M. S. Kim,; J. S. Ha, A shape memory high-voltage supercapacitor with asymmetric organic electrolytes for driving an integrated NO2 gas sensor. Adv. Funct. Mater. 2019, 29, 1901996.
[3]
D. Kim,; J. Yun,; G. Lee,; J. S. Ha, Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 2014, 6, 12034-12041.
[4]
W. Chen,; M. Beidaghi,; V. Penmatsa,; K. Bechtold,; L. Kumari,; W. Z. Li,; C. L. Wang, Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE Trans. Nanotechnol. 2010, 9, 734-740.
[5]
P. Dong,; M. T. F. Rodrigues,; J. Zhang,; R. S. Borges,; K. Kalaga,; A. L. M. Reddy,; G. G. Silva,; P. M. Ajayan,; J. Lou, A flexible solar cell/supercapacitor integrated energy device. Nano Energy 2017, 42, 181-186.
[6]
Y. Wang,; S. Y. Su,; L. J. Cai,; B. C. Qiu,; N. Wang,; J. Xiong,; C. Yang,; X. M. Tao,; Y. Chai, Monolithic integration of all-in-one supercapacitor for 3D electronics. Adv. Energy Mater. 2019, 9, 1900037.
[7]
F. C. Zhou,; Z. W. Ren,; Y. D. Zhao,; X. P. Shen,; A. W. Wang,; Y. Y. Li,; C. Surya,; Y. Chai, Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900-5908.
[8]
Y. Lu,; K. Jiang,; D. Chen,; G. Z. Shen, Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 2019, 58, 624-632.
[9]
C. W. Shen,; S. X. Xu,; Y. X. Xie,; M. Sanghadasa,; X. H. Wang,; L. W. Lin, A review of on-chip micro supercapacitors for integrated self-powering systems. J. Micro. Syst. 2017, 26, 949-965.
[10]
J. Xu,; G. Z. Shen, A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131-139.
[11]
H. Park,; J. W. Kim,; S. Y. Hong,; G. Lee,; D. S. Kim,; J. H. Oh,; S. W. Jin,; Y. R. Jeong,; S. Y. Oh,; J. Y. Yun, et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013.
[12]
K. Wang,; W. J. Zou,; B. G. Quan,; A. F. Yu,; H. P. Wu,; P. Jiang,; Z. X. Wei, An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068-1072.
[13]
M. F. El-Kady,; R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.
[14]
Z. S. Wu,; X. L. Feng,; H. M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Nat. Sci. Rev. 2014, 1, 277-292.
[15]
X. Feng,; J. Ning,; D. Wang,; J. C. Zhang,; J. G. Dong,; C. Zhang,; X. Shen,; Y. Hao, All-solid-state planner micro-supercapacitor based on graphene/NiOOH/Ni(OH)2 via mask-free patterning strategy. J. Power Sources 2019, 418, 130-137.
[16]
Z. Q. Niu,; L. Zhang,; L. L. Liu,; B. W. Zhu,; H. B. Dong,; X. D. Chen, All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035-4042.
[17]
P. H. Huang,; M. Heon,; D. Pech,; M. Brunet,; P. L. Taberna,; Y. Gogotsi,; S. Lofland,; J. D. Hettinger,; P. Simon, Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240-244.
[18]
Y. J. Lin,; J. Q. Chen,; M. M. Tavakoli,; Y. Gao,; Y. D. Zhu,; D. Q. Zhang,; M. Kam,; Z. B. He,; Z. Y. Fan, Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, 1804285.
[19]
M. F. El-Kady,; V. Strong,; S. Dubin,; R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.
[20]
W. Gao,; N. Singh,; L. Song,; Z. Liu,; A. L. M. Reddy,; L. J. Ci,; R. Vajtai,; Q. Zhang,; B. Q. Wei,; P. M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.
[21]
D. H. Youn,; C. Jo,; J. Y. Kim,; J. Lee,; J. S. Lee, Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 2015, 295, 228-234.
[22]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[23]
M. Pumera,; A. H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal. Chem. 2014, 61, 49-53.
[24]
M. A. Bissett,; I. A. Kinloch,; R. A. W. Dryfe, Characterization of MoS2-graphene composites for high-performance coin cell supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 17388-17398.
[25]
O. V. Yazyev,; A. Kis, MoS2 and semiconductors in the flatland. Mater. Today 2015, 18, 20-30.
[26]
D. J. Late,; Y. K. Huang,; B. Liu,; J. Acharya,; S. N. Shirodkar,; J. J. Luo,; A. M. Yan,; D. Charles,; U. V. Waghmare,; V. P. Dravid, et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879-4891.
[27]
B. L. Liu,; L. Chen,; G. Liu,; A. N. Abbas,; M. Fathi,; C. W. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304-5314.
[28]
B. Cho,; J. Yoon,; S. K. Lim,; A. R. Kim,; D. H. Kim,; S. G. Park,; J. D. Kwon,; Y. J. Lee,; K. H. Lee,; B. H. Lee, et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775-16780.
[29]
B. Shang,; P. F. Ma,; J. C. Fan,; L. Jiao,; Z. J. Liu,; Z. Y. Zhang,; N. Chen,; Z. L. Cheng,; X. Q. Cui,; W. T. Zheng, Stabilized monolayer 1T MoS2 embedded in CoOOH for highly efficient overall water splitting. Nanoscale 2018, 10, 12330-12336.
[30]
M. Chhowalla,; G. A. J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 2000, 407, 164-167.
[31]
S. X. Yang,; C. B. Jiang,; S. H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304.
[32]
H. H. Huang,; Y. Cui,; Q. Li,; C. C. Dun,; W. Zhou,; W. X. Huang,; L. Chen,; C. A. Hewitt,; D. L. Carroll, Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 2016, 26, 172-179.
[33]
E. Pomerantseva,; Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.
[34]
X. B. Fan,; P. T. Xu,; D. K. Zhou,; Y. F. Sun,; Y. C. Li,; M. A. T. Nguyen,; M. Terrones,; T. E. Mallouk, Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956-5960.
[35]
D. Kiriya,; M. Tosun,; P. D. Zhao,; J. S. Kang,; A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.
[36]
X. M. Geng,; W. W. Sun,; W. Wu,; B. Chen,; A. Al-Hilo,; M. Benamara,; H. L. Zhu,; F. Watanabe,; J. B. Cui,; T. P. Chen, Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.
[37]
A. Ejigu,; I. A. Kinloch,; E. Prestat,; R. A. W. Dryfe, A simple electrochemical route to metallic phase trilayer MoS2: Evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A 2017, 5, 11316-11330.
[38]
A. P. Nayak,; T. Pandey,; D. Voiry,; J. Liu,; S. T. Moran,; A. Sharma,; C. Tan,; C. H. Chen,; L. J. Li,; M. Chhowalla, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 2015, 15, 346-353.
[39]
J. Yang,; K. Wang,; J. X. Zhu,; C. Zhang,; T. X. Liu, Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 31702-31708.
[40]
M. C. Hsiao,; C. Y. Chang,; L. J. Niu,; F. Bai,; L. J. Li,; H. H. Shen,; J. Y. Lin,; T. W. Lin, Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. J. Power Sources 2017, 345, 156-164.
[41]
T. Xiang,; S. Tao,; W. Y. Xu,; Q. Fang,; C. Q. Wu,; D. B. Liu,; Y. Zhou,; A. Khalil,; Z. Muhammad,; W. S. Chu, et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: Binder-free and high-performance Li-ion anode. ACS Nano 2017, 11, 6483-6491.
[42]
Z. L. He,; W. X. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today 2016, 3, 23-56.
[43]
M. Acerce,; D. Voiry,; M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.
[44]
G. Eda,; H. Yamaguchi,; D. Voiry,; T. Fujita,; M. W. Chen,; M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[45]
M. H. Wu,; J. Zhan,; K. Wu,; Z. Li,; L. Wang,; B. J. Geng,; L. J. Wang,; D. Y. Pan, Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J. Mater. Chem. A 2017, 5, 14061-14069.
[46]
Z. Fei,; B. Wang,; C. H. Ho,; F. Lin,; J. Yuan,; Z. Zhang,; C. H. Jin, Direct identification of monolayer rhenium diselenide by an individual diffraction pattern. Nano Res. 2017, 10, 2535-2544.
[47]
N. Wei,; Q. Wang,; Y. Ma,; L. M. Ruan,; W. Zeng,; D. Liang,; C. Xu,; L. S. Huang,; J. L. Zhao, Superelastic active graphene aerogels dried in natural environment for sensitive supercapacitor-type stress sensor. Electrochim Acta 2018, 283, 1390-1400.
[48]
G. A. Asres,; J. J. Baldoví,; A. Dombovari,; T. Järvinen,; G. S. Lorite,; M. Mohl,; A. Shchukarev,; A. P. Paz,; L. D. Xian,; J. P. Mikkola, et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 2018, 11, 4215-4224.
[49]
Q. Yue,; Z. Z. Shao,; S. L. Chang,; J. B. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425.
[50]
P. Jungwirth, Density functional theory. A practical introduction. By David Sholl and Janice A. Steckel. Angew. Chem., Int. Ed. 2010, 49, 485.
[51]
M. Brandbyge,; J. L. Mozos,; P. Ordejón,; J. Taylor,; K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.
[52]
C. Wang,; S. C. Lei,; X. Li,; S. X. Guo,; P. Cui,; X. Q. Wei,; W. H. Liu,; H. Z. Liu, A reduced GO-graphene hybrid gas sensor for ultra-low concentration ammonia detection. Sensors 2018, 18, 3147.
[53]
Z. S. Wu,; K. Parvez,; X. L. Feng,; K. Müllen, Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A 2014, 2, 8288-8293.
[54]
J. Yun,; C. Song,; H. Lee,; H. Park,; Y. R. Jeong,; J. W. Kim,; S. W. Jin,; S. Y. Oh,; L. F. Sun,; G. Zi, et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644-654.
[55]
J. Q. Qin,; F. Zhou,; H. Xiao,; R. Y. Ren,; Z. S. Wu, Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 2018, 61, 233-242.
[56]
J. Q. Qin,; J. M. Gao,; X. Y. Shi,; J. Y. Chang,; Y. F. Dong,; S. H. Zheng,; X. Wang,; L. Feng,; Z. S. Wu, Hierarchical ordered dual-mesoporous polypyrrole/graphene nanosheets as Bi-functional active materials for high-performance planar integrated system of micro-supercapacitor and gas sensor. Adv. Funct. Mater. 2020, 30, 1909756.
Nano Research
Pages 114-121
Cite this article:
Zhang C, Ning J, Wang B, et al. Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors. Nano Research, 2021, 14(1): 114-121. https://doi.org/10.1007/s12274-020-3052-x
Topics:

1103

Views

42

Crossref

0

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 30 June 2020
Revised: 09 August 2020
Accepted: 11 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return