AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode

Fei Sun1( )Zhibin Qu1Hua Wang1Xiaoyan Liu2Tong Pei1Rui Han1Jihui Gao1Guangbo Zhao1Yunfeng Lu3( )
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Department of Chemistry, Shanghai Normal University, Shanghai 150001, China
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
Show Author Information

Graphical Abstract

Abstract

Restraining the shuttle effects of lithium polysulfides is the key to improve the cycling reversibility and stability of lithium-sulfur (Li-S) batteries for which design of robust sulfur hosts has been regarded as the most effective strategy. In this work, we report a new type of hybrid sulfur host which is composed of Al2O3 homogenously decorated in nitrogen-rich mesoporous carbon framework (NMC-Al2O3). The NMC-Al2O3 hybrid host features a poly-dispersed spherical morphology and a mesoporous configuration with high surface area and large pore volume that can accommodate a high sulfur content up to 73.5 wt.%. As a result, the fabricated NMC-Al2O3-S cathode exhibits all-round improvements in electrochemical properties in term of capacities (1,212 mAh·g-1 at 0.2 C; 755 mAh·g-1 at 2 C), cycling charge-discharge reversibility (sustainably 100% efficiencies) and stability (1,000 cycles with only 0.023% capacity decay per cycle at 0.5 C). By contrast, the Al2O3-free NMC-S cathode shows both decreased capacities and rapidly descending Coulombic efficiencies during cycling. Density functional theory (DFT) calculations further reveal that the implanted Al2O3 can greatly enhance the chemical adsorption and catalytic conversion for various lithium polysulfides and thereby effectively prevent the polysulfide shuttling and significantly improve the utilizability, reversibility and stability of sulfur cathode.

Electronic Supplementary Material

Download File(s)
12274_2020_3055_MOESM1_ESM.pdf (2.2 MB)

References

[1]
A. Manthiram,; Y. Z. Fu,; S. H. Chung,; C. X. Zu,; Y. S. Su Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-11787.
[2]
X. L. Ji,; K. T. Lee; L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
[3]
Y. Yang,; G. Y. Zheng,; Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.
[4]
Z. L. Xu,; J. K. Kim,; K. Kang, Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 2018, 19, 84-107.
[5]
Y. Z. Wang,; X. X. Huang,; S. Q. Zhang,; Y. L. Hou, Sulfur hosts against the shuttle effect. Small Methods 2018, 2, 1700345.
[6]
P. G. Bruce,; S. A. Freunberger,; L. J. Hardwick; J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.
[7]
Y. X. Yin,; S. Xin,; Y. G. Guo,; L. J. Wan, Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.
[8]
D. H. Liu,; C. Zhang,; G. M. Zhou,; W. Lv,; G. W. Ling,; L. J. Zhi; Q. H. Yang, Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.
[9]
J. Zhang,; H. Huang,; J. Bae,; S. H. Chung,; W. K. Zhang,; A. Manthiram,; G. Yu, Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.
[10]
Z. W. Zhang,; Z. Q. Li,; F. B. Hao,; X. K. Wang,; Q. Li,; Y. X. Qi,; R. H. Fan,; L. W. Yin, 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv. Funct. Mater. 2014, 24, 2500-2509.
[11]
X. Y. Tao,; X. R. Chen,; Y. Xia,; H. Huang,; Y. P. Gan,; R. Wu,; F. Chen,; W. K. Zhang, Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295-3301.
[12]
Z. Li,; Y. Jiang,; L. X. Yuan,; Z. Q. Yi,; C. Wu,; Y. Liu,; P. Strasser,; Y. H. Huang, Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295-9303.
[13]
J. T. Lee,; Y. Y. Zhao,; S. Thieme,; H. Kim,; M. Oschatz,; L. Borchardt,; A. Magasinski,; W. I. Cho,; S. Kaskel,; G. Yushin, Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Adv. Mater. 2013, 25, 4573-4579.
[14]
Z. Y. Lyu,; D. Xu,; L. J. Yang,; R. C. Che,; R. Feng,; J. Zhao,; Y. Li,; Q Wu,; X. Z. Wang,; Z. Hu, Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 12, 657-665.
[15]
C. Tang,; B. Q. Li,; Q. Zhang,; L. Zhu,; H. F. Wang,; J. L. Shi,; F. Wei, CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577-585.
[16]
J. L. Shi,; H. J. Peng,; L. Zhu,; W. C. Zhu,; Q. Zhang, Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium-sulfur batteries. Carbon 2015, 92, 96-105.
[17]
X. Q. Zhang,; B. He,; W. C. Li,; A. H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238-1246.
[18]
S. T. Lu,; Y. W. Cheng,; X. H. Wu,; J. Liu, Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485-2489.
[19]
Y. L. Ding,; P. Kopold,; K. Hahn,; P. A. van Aken,; J. Maier,; Y. Yu, Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112-1119.
[20]
C. Tang,; Q. Zhang,; M. Q. Zhao,; J. Q. Huang,; X. B. Cheng,; G. L. Tian,; H. J. Peng,; F. Wei, Nitrogen-doped aligned carbon nanotube/ graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100-6105.
[21]
Y. C. Qiu,; W. F. Li,; W. Zhao,; G. Z. Li,; Y. Hou,; M. N. Liu,; L. S. Zhou,; F. M. Ye,; H. F. Li,; Z. H. Wei, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821-4827.
[22]
R. J. Chen,; T. Zhao,; J. Lu,; F. Wu,; L. Li,; J. Z. Chen,; G. Q. Tan,; Y. S. Ye,; K. Amine, Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642-4649.
[23]
H. L. Wang,; J. T. Robinson,; G. Diankov,; H. J. Dai, Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270-3271.
[24]
J. X. Song,; T. Xu,; M. L. Gordin,; P. Y. Zhu,; D. P. Lv,; Y. B. Jiang,; Y. S. Chen,; Y. H. Duan,; D. H. Wang, Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-1250.
[25]
J. X. Song,; M. L. Gordin,; T. Xu,; S. R. Chen,; Z. X. Yu,; H. Sohn,; J. Lu,; Y. Ren,; Y. H. Duan,; D. H. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325-4329.
[26]
L. B. Ma,; R. P. Chen,; G. Y. Zhu,; Y. Hu,; Y. R. Wang,; T. Chen,; J. Liu,; Z. Jin, Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274-7283.
[27]
C. Zheng,; S. Z. Niu,; W. Lv,; G. M. Zhou,; J. Li,; S. X. Fan,; Y. Q. Deng,; Z. Z. Pan,; B. H. Li,; F. Y. Kang, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306-312.
[28]
Q. Pang,; D. Kundu,; M. Cuisinier,; L. F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.
[29]
M. S. Xu,; T. Liang,; M. M. Shi,; H. Z. Chen, Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
[30]
Z. Yuan,; H. J. Peng,; T. Z. Hou,; J. Q. Huang,; C. M. Chen,; D. W. Wang,; X. B. Cheng,; F. Wei,; Q. Zhang, Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.
[31]
Z. H. Sun,; J. Q. Zhang,; L. C. Yin,; G. J. Hu,; R. P. Fang,; H. M. Cheng,; F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.
[32]
Y. Q. Tao,; Y. J. Wei,; Y. Liu,; J. T. Wang,; W. M. Qiao,; L. C. Ling,; D. H. Long, Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 2016, 9, 3230-3239.
[33]
G. D. Park,; J. Lee,; Y. Z. Piao,; Y. C. Kang, Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chem. Eng. J. 2018, 335, 600-611.
[34]
Z. Li,; J. T. Zhang,; X. W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886-12890.
[35]
M. F. Chen,; Q. Lu,; S. X. Jiang,; C. Huang,; X. Y. Wang,; B. Wu,; K. X. Xiang,; Y. T. Wu, MnO2 nanosheets grown on the internal/ external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem. Eng. J. 2018, 335, 831-842.
[36]
R. Carter,; L. Oakes,; N. Muralidharan,; A. P. Cohn,; A. Douglas,; C. L. Pint, Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7185-7192.
[37]
X. L. Wang,; G. Li,; J. D. Li,; Y. N. Zhang,; A. Wook,; A. P. Yu,; Z. W. Chen, Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 2533-2538.
[38]
G. Babu,; K. Ababtain,; K. Y. S. Ng,; L. M. R. Arava, Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci. Rep. 2015, 5, 8763.
[39]
I. A. M. Ousmane,; R. Li,; C. Wang,; G. R. Li,; W. L. Cai,; B. H. Liu,; Z. P. Li, Fabrication of oriented-macroporous-carbon incorporated with γ-Al2O3 for high performance lithium-sulfur battery. Microporous Mesoporous Mater. 2018, 266, 276-282.
[40]
F. Sun,; J. H. Gao,; X. X. Pi,; L. J. Wang,; Y. Q. Yang,; Z. B. Qu,; S. H. Wu, High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources 2017, 337, 189-196.
[41]
R. Han,; J. H. Gao,; S. Y. Wei,; Y. L. Su,; Y. K. Qin, Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique. J. Mater. Chem. A 2018, 6, 3462-3470.
[42]
H. Y. He,; K. Alberti,; T. L. Barr,; J. Klinowski, Esca studies of aluminophosphate molecular sieves. J. Phys. Chem. 1993, 97, 13703-13707.
[43]
H. Yuan,; H. J. Peng,; B. Q. Li,; J. Xie,; L. Kong,; M. Zhao,; X. Chen,; J. Q. Huang,; Q. Zhang, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.
[44]
S. Z. Li,; H. L. Zhang,; W. R. Chen,; Y. L. Zou,; H. Q. Yang,; J. B. Yang,; C. Peng, Toward commercially viable Li-S batteries: Overall performance improvements enabled by a multipurpose interlayer of hyperbranched polymer-grafted carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 25767-25774.
[45]
M. Zhao,; H. J. Peng,; Z. W. Zhang,; B. Q. Li,; X. Chen,; J. Xie,; X. Chen,; J. Y. Wei,; Q. Zhang,; J. Q. Huang, Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem., Int. Ed. 2019, 58, 3779-3783.
[46]
X. Liang,; Y. Rangom,; C. Y. Kwok,; Q. Pang,; L. F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.
[47]
B. He,; W. C. Li,; C. Yang,; S. Q. Wang; A. H. Lu, Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633-1639.
[48]
S. Z. Niu,; W. Lv,; C. Zhang,; Y. T. Shi,; J. F. Zhao,; B. H. Li,; Q. H. Yang,; F. Y. Kang, One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries. J. Power Sources 2015, 295, 182-189.
[49]
X. L. Li,; L. B. Chu,; Y. Y. Wang,; L. S. Pan, Anchoring function for polysulfide ions of ultrasmall SnS2 in hollow carbon nanospheres for high performance lithium-sulfur batteries. Mater. Sci. Eng. B 2016, 205, 46-54.
[50]
X. L. Ji,; S. Evers,; R. Black,; L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.
[51]
M. P. Yu,; J. S. Ma,; H. Q. Song,; A. J. Wang,; F. Y. Tian,; Y. S. Wang,; H. Qiu,; R. M. Wang, Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495-1503.
[52]
X. G Han,; Y. H. Xu,; X. Y. Chen,; Y. C. Chen,; N. Weadock,; J. Y. Wan,; H. L. Zhu,; Y. L. Liu,; H. Q. Li,; G. Rubloff, et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2013, 2, 1197-1206.
[53]
Z. M. Cui,; C. X. Zu,; W. D. Zhou,; A. Manthiram,; J. B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926-6931.
[54]
J. X. Song,; T. Xu,; M. L. Gordin,; P. Y. Zhu,; D. P. Lv,; Y. B. Jiang,; Y. S. Chen,; Y. H. Duan,; D. H. Wang, Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-1250.
[55]
Y. X. Mo,; J. X. Lin,; Y. J. Wu,; Z. W. Yin,; Y. Q. Lu,; J. T. Li,; Y. Zhou,; T. Sheng,; L. Huang,; S. G. Sun, Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: A conductive cathode with suppressed shuttling effect for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 4065-4073.
[56]
G. M. Zhou,; S. Y. Zhao,; T. S. Wang,; S. Z. Yang,; B. Johannessen,; H. Chen,; C. W. Liu,; Y. S. Ye,; Y. C. Wu,; Y. C. Peng, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252-1261.
[57]
X. W. Ding,; S. Yang,; S. Y. Zhou,; Y. X. Zhan,; Y. C. Lai,; X. M. Zhou,; X. J. Xu,; H. G. Nie,; S. M. Huang,; Z. Yang, Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater., in press, .
[58]
Z. Yu,; B. L. Wang,; X. B. Liao,; K. N. Zhao,; Z. F. Yang,; F. J. Xia,; C. L. Sun,; Z. Wang,; C. Y. Fan,; J. P. Zhang, et al. G. Boosting polysulfide redox kinetics by graphene-supported Ni nanoparticles with carbon coating. Adv. Energy Mater. 2020, 10, 2000907.
Nano Research
Pages 131-138
Cite this article:
Sun F, Qu Z, Wang H, et al. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Research, 2021, 14(1): 131-138. https://doi.org/10.1007/s12274-020-3055-7
Topics:

843

Views

24

Crossref

0

Web of Science

25

Scopus

5

CSCD

Altmetrics

Received: 29 July 2020
Revised: 12 August 2020
Accepted: 13 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return