AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2

Lingchao Zhang1,§Ke Wang1,§Yongfeng Liu1( )Xin Zhang1Jianjiang Hu2Mingxia Gao1Hongge Pan1
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China

§ Lingchao Zhang and Ke Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Critical limitations in applying MgH2 as a hydrogen-storage medium include the high H2 desorption temperature and slow reaction kinetics. In this study, we synthesized hierarchical porous TiNb2O7 spheres in micrometer scale built with 20-50 nm nanospheres, which showed stable activity to catalyze hydrogen storage in MgH2 as precursors. The addition of 7 wt.% TiNb2O7 in MgH2 reduced the dehydrogenation onset temperature from 300 to 177 °C. At 250 °C, approximately 5.5 wt.% H2 was rapidly released in 10 min. Hydrogen uptake was detected even at room temperature under 50 bar hydrogen; 4.5 wt.% H2 was absorbed in 3 min at 150 °C, exhibiting a superior low-temperature hydrogenation performance. Moreover, nearly constant capacity was observed from the second cycle onward, demonstrating stable cyclability. During the ball milling and initial de/hydrogenation process, the high-valent Ti and Nb of TiNb2O7 were reduced to the lower-valent species or even zero-valent metal, which in situ created multivalent multielement catalytic surroundings. A strong synergistic effect was obtained for hybrid oxides of Nb and Ti by density functional theory (DFT) calculations, which largely weakens the Mg-H bonding and results in a large reduction in kinetic barriers for hydrogen storage reactions of MgH2. Our findings may guide the further design and development of high-performance complex catalysts for the reversible hydrogen storage of hydrides.

Electronic Supplementary Material

Download File(s)
12274_2020_3058_MOESM1_ESM.pdf (3.3 MB)

References

[1]
J. Tollefson, Hydrogen vehicles: Fuel of the future? Nature 2010, 464, 1262-1264.
[2]
T. He,; P. Pachfule,; H. Wu,; Q. Xu,; P. Chen, Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.
[3]
L. Schlapbach,; A. Züttel, Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353-358.
[4]
J. Yang,; A. Sudik,; C. Wolverton,; D. J. Siegel, High capacity hydrogenstorage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656-675.
[5]
U. Eberle,; M. Felderhoff,; F. Schüth, Chemical and physical solutions for hydrogen storage. Angew. Chem., Int. Ed. 2009, 48, 6608-6630.
[6]
R. Mohtadi,; S. I. Orimo, The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2017, 2, 16091.
[7]
I. P. Jain,; C. Lal,; A. Jain, Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133-5144.
[8]
V. A. Yartys,; M. V. Lototskyy,; E. Akiba,; R. Albert,; V. E. Antonov,; J. R. Ares,; M. Baricco,; N. Bourgeois,; C. E. Buckley,; J. M. B. von Colbe, et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809-7859.
[9]
K. F. Aguey-Zinsou,; J. R. Ares-Fernández, Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci. 2010, 3, 526-543.
[10]
J. G. Zhang,; Y. F. Zhu,; L. L. Yao,; C. Xu,; Y. N. Liu,; L. Q. Li, State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. J. Alloys Compd. 2019, 782, 796-823.
[11]
X. L. Zhang,; Y. F. Liu,; X. Zhang,; J. J. Hu,; M. X. Gao,; H. G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064.
[12]
Y. H. Sun,; C. Q. Shen,; Q. W. Lai,; W. Liu,; D. W. Wang,; K. F. Aguey-Zinsou, Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168-198.
[13]
T. Sadhasivam,; H. T. Kim,; S. Jung,; S. H. Roh,; J. H. Park,; H. Y. Jung, Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sust. Energ. Rev. 2017, 72, 523-534.
[14]
X. B. Xie,; M. Chen,; H. M. Hu,; B. L. Wang,; R. H. Yu,; T. Liu, Recent advances in magnesium-based hydrogen storage materials with multiple catalysts. Int. J. Hydrogen Energy 2019, 44, 10694-10712.
[15]
C. J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 2015, 84, 96-106.
[16]
A. Zaluska,; L. Zaluski,; J. O. Ström-Olsen, Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 1999, 288, 217-225.
[17]
K. L. Lim,; H. Kazemian,; Z. Yaakob,; W. R. W. Daud, Solid-state materials and methods for hydrogen storage: A critical review. Chem. Eng. Technol. 2010, 33, 213-226.
[18]
G. Liang,; J. Huot,; S. Boily,; A. van Neste,; R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 1999, 292, 247-252.
[19]
C. X. Shang,; M. Bououdina,; Y. Song,; Z. X. Guo, Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydrogen Energy 2004, 29, 73-80.
[20]
N. Hanada,; T. Ichikawa,; H. Fujii, Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 2005, 109, 7188-7194.
[21]
Z. S. Wronski,; G. J. C. Carpenter,; T. Czujko,; R. A. Varin, A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides. Int. J. Hydrogen Energy 2011, 36, 1159-1166.
[22]
G. Barkhordarian,; T. Klassen,; R. Bormann, Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 2004, 364, 242-246.
[23]
N. Hanada,; T. Ichikawa,; H. Fujii, Hydrogen absorption kinetics of the catalyzed MgH2 by niobium oxide. J. Alloys Compd. 2007, 446-447, 67-71.
[24]
O. Friedrichs,; T. Klassen,; J. C. Sánchez-López,; R. Bormann,; A. Fernández, Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles. Scr. Mater. 2006, 54, 1293-1297.
[25]
K. Wang,; X. Zhang,; Z. H. Ren,; X. L. Zhang,; J. J. Hu,; M. X. Gao,; H. G. Pan,; Y. F. Liu, Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage Mater. 2019, 23, 79-87.
[26]
T. Ma,; S. Isobe,; Y. M. Wang,; N. Hashimoto,; S. Ohnuki, Nb-gateway for hydrogen desorption in Nb2O5 catalyzed MgH2 nanocomposite. J. Phys. Chem. C 2013, 117, 10302-10307.
[27]
O. Friedrichs,; J. C. Sánchez-López,; C. López-Cartes,; T. Klassen,; R. Bormann,; A. Fernández, Nb2O5 “pathway effect” on hydrogen sorption in Mg. J. Phys. Chem. B 2006, 110, 7845-7850.
[28]
W. Oelerich,; T. Klassen,; R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 2001, 315, 237-242.
[29]
K. S. Jung,; D. H. Kim,; E. Y. Lee,; K. S. Lee, Hydrogen sorption of magnesium hydride doped with nano-sized TiO2. Catal. Today 2007, 120, 270-275.
[30]
D. L. Croston,; D. M. Grant,; G. S. Walker, The catalytic effect of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH2. J. Alloys Compd. 2010, 492, 251-258.
[31]
P. M. Jardim,; M. O. T. da Conceição,; M. C. Brum,; D. S. dos Santos, Hydrogen sorption kinetics of ball-milled MgH2-TiO2 based 1D nanomaterials with different morphologies. Int. J. Hydrogen Energy 2015, 40, 17110-17117.
[32]
X. Zhang,; Z. H. Leng,; M. X. Gao,; J. J. Hu,; F. Du,; J. H. Yao,; H. G. Pan,; Y. F. Liu, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J. Power Sources 2018, 398, 183-192.
[33]
J. Zhang,; J. W. Shan,; P. Li,; F. Q. Zhai,; Q. Wan,; Z. J. Liu,; X. H. Qu, Dehydrogenation mechanism of ball-milled MgH2 doped with ferrites (CoFe2O4, ZnFe2O4, MnFe2O4 and Mn0.5Zn0.5Fe2O4) nanoparticles. J. Alloys Compd. 2015, 643, 174-180.
[34]
N. A. Ali,; N. H. Idris,; M. F. Md Din,; N. S. Mustafa,; N. A. Sazelee,; F. A. Halim Yap,; N. N. Sulaiman,; M. S. Yahya,; M. Ismail, Nanolayer-like-shaped MgFe2O4 synthesised via a simple hydrothermal method and its catalytic effect on the hydrogen storage properties of MgH2. RSC Adv. 2018, 8, 15667-15674.
[35]
M. Ismail,; N. S. Mustafa,; N. A. Ali,; N. A. Sazelee; M. S. Yahya, The hydrogen storage properties and catalytic mechanism of the CuFe2O4-doped MgH2 composite system. Int. J. Hydrogen Energy 2019, 44, 318-324.
[36]
Q. Wan,; P. Li,; J. W. Shan,; F. Q. Zhai,; Z. L. Li,; X. H. Qu, Superior catalytic effect of nickel ferrite nanoparticles in improving hydrogen storage properties of MgH2. J. Phys. Chem. C 2015, 119, 2925-2934.
[37]
X. Huang,; X. Z. Xiao,; X. C. Wang,; C. T. Wang,; X. L. Fan,; Z. C. Tang,; C. Y. Wang,; Q. D. Wang,; L. X. Chen, Synergistic catalytic activity of porous rod-like TMTiO3 (TM = Ni and Co) for reversible hydrogen storage of magnesium hydride. J. Phys. Chem. C 2018, 122, 27973-27982.
[38]
X. Zhang,; Z. Y. Shen,; N. Jian,; J. J. Hu,; F. Du,; J. H. Yao,; M. X. Gao,; Y. F. Liu,; H. G. Pan, A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2018, 43, 23327-23335.
[39]
A. Valentoni,; G. Mulas,; S. Enzo,; S. Garroni, Remarkable hydrogen storage properties of MgH2 doped with VNbO5. Phys. Chem. Chem. Phys. 2018, 20, 4100-4108.
[40]
J. Cui,; H. Wang,; J. W. Liu,; L. Z. Ouyang,; Q. G. Zhang,; D. L. Sun,; X. D. Yao,; M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 2013, 1, 5603-5611.
[41]
A. Zaluska,; L. Zaluski,; J. O. Ström-Olsen, Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 2001, 72, 157-165.
[42]
S. J. Clark,; M. D. Segall,; C. J. Pickard,; P. J. Hasnip,; M. I. J. Probert,; K. Refson,; M. C. Payne, First principles methods using CASTEP. Z. Kristall. 2005, 220, 567-570.
[43]
E. R. McNellis,; J. Meyer,; K. Reuter, Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Phys. Rev. B 2009, 80, 205414.
[44]
J. P. Perdew,; J. A. Chevary,; S. H. Vosko,; K. A. Jackson,; M. R. Pederson,; D. J. Singh,; C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.
[45]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[46]
H. J. Monkhorst,; J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[47]
S. Grimme,; J. Antony,; S. Ehrlich,; H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[48]
N. Govind,; M. Petersen,; G. Fitzgerald,; D. King-Smith,; J. Andzelm, A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250-258.
[49]
Z. Y. Wang,; X. L. Zhang,; Z. H. Ren,; Y. Liu,; J. J. Hu,; H. W. Li,; M. X. Gao,; H. G. Pan,; Y. F. Liu, In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2. J. Mater. Chem. A 2019, 7, 14244-14252.
[50]
F. Werfel,; O. Brümmer, Corundum structure oxides studied by XPS. Phys. Scr. 1983, 28, 92-96.
[51]
F. Garbassi,; J. C. J. Bart,; G. Petrini, XPS study of tellurium— niobium and tellurium—tantalum oxide systems. J. Electron Spectrosc. 1981, 22, 95-107.
[52]
P. Vajeeston,; P. Ravindran,; B. C. Hauback,; H. Fjellvåg,; A. Kjekshus,; S. Furuseth,; M. Hanfland, Structural stability and pressure-induced phase transitions in MgH2. Phys. Rev. B 2006, 73, 224102.
[53]
S. Milošević,; S. Kurko,; L. Pasquini,; L. Matović,; R. Vujasin,; N. Novaković,; J. G. Novaković, Fast hydrogen sorption from MgH2-VO2(B) composite materials. J. Power Sources 2016, 307, 481-488.
Nano Research
Pages 148-156
Cite this article:
Zhang L, Wang K, Liu Y, et al. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Research, 2021, 14(1): 148-156. https://doi.org/10.1007/s12274-020-3058-4
Topics:

919

Views

81

Crossref

0

Web of Science

82

Scopus

1

CSCD

Altmetrics

Received: 14 June 2020
Revised: 30 July 2020
Accepted: 17 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return