AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz

Vinod K. Sangwan1Joohoon Kang1,David Lam1J. Tyler Gish1Spencer A. Wells1Jan Luxa2James P. Male1G. Jeffrey Snyder1Zdeněk Sofer2Mark C. Hersam1,3,4( )
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA

Present address: School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

Show Author Information

Graphical Abstract

Abstract

Emerging layered semiconductors present multiple advantages for optoelectronic technologies including high carrier mobilities, strong light-matter interactions, and tunable optical absorption and emission. Here, metal-semiconductor-metal avalanche photodiodes (APDs) are fabricated from Bi2O2Se crystals, which consist of electrostatically bound [Bi2O2]2+ and [Se]2- layers. The resulting APDs possess an intrinsic carrier multiplication factor up to 400 at 7 K with a responsivity gain exceeding 3,000 A/W and bandwidth of ~ 400 kHz at a visible wavelength of 515.6 nm, ultimately resulting in a gain bandwidth product exceeding 1 GHz. Due to exceptionally low dark currents, Bi2O2Se APDs also yield high detectivities up to 4.6 × 1014 Jones. A systematic analysis of the photocurrent temperature and bias dependence reveals that the carrier multiplication process in Bi2O2Se APDs is consistent with a reverse biased Schottky diode model with a barrier height of ~ 44 meV, in contrast to the charge trapping extrinsic gain mechanism that dominates most layered semiconductor phototransistors. In this manner, layered Bi2O2Se APDs provide a unique platform that can be exploited in a diverse range of high-performance photodetector applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3059_MOESM1_ESM.pdf (1.9 MB)

References

[1]
F. H. L. Koppens,; T. Mueller,; P. Avouris,; A. C. Ferrari,; M. S. Vitiello,; M. Polini, Photodetectors based on graphene, other two- dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.
[2]
V. K. Sangwan,; M. C. Hersam, Electronic transport in two- dimensional materials. Annu. Rev. Phys. Chem. 2018, 69, 299-325.
[3]
G. Konstantatos,; E. H. Sargent, Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391-400.
[4]
Z. H. Sun,; H. X. Chang, Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.
[5]
M. E. Beck,; M. C. Hersam, Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 2020, 14, 6498-6518.
[6]
S. Padgaonkar,; J. N. Olding,; L. J. Lauhon,; M. C. Hersam,; E. A. Weiss, Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763-772.
[7]
V. K. Sangwan,; M. C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517-528.
[8]
D. Jariwala,; V. K. Sangwan,; L. J. Lauhon,; T. J. Marks,; M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102-1120.
[9]
M. M. Furchi,; D. K. Polyushkin,; A. Pospischil,; T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165-6170.
[10]
S. M. Sze,; K. K. Ng, Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.
[11]
R. H. Bube, Photoelectronic Properties of Semiconductors; Cambridge University Press: Cambridge, 1992.
[12]
H. H. Fang,; W. D. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.
[13]
J. Kang,; S. A. Wells,; V. K. Sangwan,; D. Lam,; X. L. Liu,; J. Luxa,; Z. Sofer,; M. C. Hersam, Solution-based processing of optoelectronically active indium selenide. Adv. Mater. 2018, 30, 1802990.
[14]
W. J. Zhang,; C. P. Chuu,; J. K. Huang,; C. H. Chen,; M. L. Tsai,; Y. H. Chang,; C. T. Liang,; Y. Z. Chen,; Y. L. Chueh,; J. H. He, et al. Ultrahigh-gain photodetectors based on atomically thin graphene- MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.
[15]
D. Kufer,; G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307-7313.
[16]
W. Choi,; M. Y. Cho,; A. Konar,; J. H. Lee,; G. B. Cha,; S. C. Hong,; S. Kim,; J. Kim,; D. Jena,; J. Joo, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836.
[17]
J. Kang,; V. K. Sangwan,; H. S. Lee,; X. L. Liu,; M. C. Hersam, Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics 2018, 5, 3996-4002.
[18]
C. C. Wu,; D. Jariwala,; V. K. Sangwan,; T. J. Marks,; M. C. Hersam,; L. J. Lauhon, Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 2013, 4, 2508-2513.
[19]
G. Konstantatos,; M. Badioli,; L. Gaudreau,; J. Osmond,; M. Bernechea,; F. P. G. de Arquer,; F. Gatti,; F. H. L. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
[20]
N. Duan,; T. Y. Liow,; A. E. J. Lim,; L. Ding,; G. Q. Lo, 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Opt. Exp. 2012, 20, 11031-11036.
[21]
A. C. Farrell,; X. Meng,; D. K. Ren,; H. Kim,; P. Senanayake,; N. Y. Hsieh,; Z. X. Rong,; T. Y. Chang,; K. M. Azizur-Rahman,; D. L. Huffaker, InGaAs-GaAs nanowire avalanche photodiodes toward single- photon detection in free-running mode. Nano Lett. 2019, 19, 582-590.
[22]
S. D. Lei,; F. F. Wen,; L. H. Ge,; S. Najmaei,; A. George,; Y. J. Gong,; W. L. Gao,; Z. H. Jin,; B. Li,; J. Lou, et al. An atomically layered InSe avalanche photodetector. Nano Lett. 2015, 15, 3048-3055.
[23]
G. Dastgeer,; M. F. Khan,; G. Nazir,; A. M. Afzal,; S. Aftab,; B. A. Naqvi,; J. Cha,; K. A. Min,; Y. Jamil,; J. Jung, et al. Temperature-dependent and gate-tunable rectification in a black phosphorus/WS2 van der Waals heterojunction diode. ACS Appl. Mater. Interfaces 2018, 10, 13150-13157.
[24]
A. Y. Gao,; J. W. Lai,; Y. J. Wang,; Z. Zhu,; J. W. Zeng,; G. L. Yu,; N. Z. Wang,; W. C. Chen,; T. J. Cao,; W. D. Hu, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-222.
[25]
F. Ahmed,; Y. D. Kim,; Z. Yang,; P. He,; E. Hwang,; H. Yang,; J. Hone,; W. J. Yoo, Impact ionization by hot carriers in a black phosphorus field effect transistor. Nat. Commun. 2018, 9, 3414.
[26]
J. Pak,; Y. Jang,; J. Byun,; K. Cho,; T. Y. Kim,; J. K. Kim,; B. Y. Choi,; J. Shin,; Y. Hong,; S. Chung, et al. Two-dimensional thickness- dependent avalanche breakdown phenomena in MoS2 field-effect transistors under high electric fields. ACS Nano 2018, 12, 7109-7116.
[27]
J. X. Wu,; C. W. Tan,; Z. J. Tan,; Y. J. Liu,; J. B. Yin,; W. H. Dang,; M. Z. Wang,; H. L. Peng, Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021-3026.
[28]
J. X. Wu,; H. T. Yuan,; M. M. Meng,; C. Chen,; Y. Sun,; Z. Y. Chen,; W. H. Dang,; C. W. Tan,; Y. J. Liu,; J. B. Yin, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530-534.
[29]
S. D. N. Luu,; P. Vaqueiro, Layered oxychalcogenides: Structural chemistry and thermoelectric properties. J. Mater. 2016, 2, 131-140.
[30]
J. K. Harada,; N. Charles,; K. R. Poeppelmeier,; J. M. Rondinelli, Heteroanionic materials by design: Progress toward targeted properties. Adv. Mater. 2019, 31, 1805295.
[31]
C. Chen,; M. X. Wang,; J. X. Wu,; H. X. Fu,; H. F. Yang,; Z. Tian,; T. Tu,; H. Peng,; Y. Sun,; X. Xu, et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci. Adv. 2018, 4, eaat8355.
[32]
H. X. Fu,; J. X. Wu,; H. L. Peng,; B. H. Yan, Self-modulation doping effect in the high-mobility layered semiconductor Bi2O2Se. Phys. Rev. B 2018, 97, 241203.
[33]
Q. D. Fu,; C. Zhu,; X. X. Zhao,; X. L. Wang,; A. Chaturvedi,; C. Zhu,; X. W. Wang,; Q. S. Zeng,; J. D. Zhou,; F. C. Liu, et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.
[34]
J. Li,; Z. X. Wang,; Y. Wen,; J. W. Chu,; L. Yin,; R. Q. Cheng,; L. Lei,; P. He,; C. Jiang,; L. P. Feng, et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.
[35]
K. G. McKay, Avalanche breakdown in silicon. Phys. Rev. 1954, 94, 877-884.
[36]
S. L. Miller, Avalanche breakdown in germanium. Phys. Rev. 1955, 99, 1234-1241.
[37]
S. L. Miller, Ionization rates for holes and electrons in silicon. Phys. Rev. 1957, 105, 1246-1249.
[38]
P. A. Wolff, Theory of electron multiplication in silicon and germanium. Phys. Rev. 1954, 95, 1415-1420.
[39]
M. Sparks,; D. L. Mills,; R. Warren,; T. Holstein,; A. A. Maradudin,; L. J. Sham,; E., Loh, Jr; D. F. King, Theory of electron-avalanche breakdown in solids. Phys. Rev. B 1981, 24, 3519-3536.
[40]
J. H. Werner,; S. Kolodinski,; H. J. Queisser, Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 1994, 72, 3851-3854.
[41]
S. A. Wells,; A. Henning,; J. T. Gish,; V. K. Sangwan,; L. J. Lauhon,; M. C. Hersam, Suppressing ambient degradation of exfoliated InSe nanosheet devices via seeded atomic layer deposition encapsulation. Nano Lett. 2018, 18, 7876-7882.
[42]
M. A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 1956, 103, 1648-1656.
[43]
A. Rose, Space-charge-limited currents in solids. Phys. Rev. 1955, 97, 1538-1544.
[44]
S. Ghatak,; A. Ghosh, Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. Appl. Phys. Lett. 2013, 103, 122103.
[45]
V. Kumar,; S. C. Jain,; A. K. Kapoor,; J. Poortmans,; R. Mertens, Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics. J. Appl. Phys. 2003, 94, 1283-1285.
[46]
D. Joung,; A. Chunder,; L. Zhai,; S. I. Khondaker, Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl. Phys. Lett. 2010, 97, 093105.
[47]
A. Zevalkink,; D. M. Smiadak,; J. L. Blackburn,; A. J. Ferguson,; M. L. Chabinyc,; O. Delaire,; J. Wang,; K. Kovnir,; J. Martin,; L. T. Schelhas, et al. A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Appl. Phys. Rev. 2018, 5, 021303.
[48]
H. Wang,; Y. Z. Pei,; A. D. LaLonde,; G. J. Snyder, Weak electron- phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl. Acad. Sci. USA 2012, 109, 9705-9709.
[49]
J. B. Yu,; Q. Sun, Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material. Appl. Phys. Lett. 2018, 112, 053901.
[50]
K. A. Borup,; E. S. Toberer,; L. D. Zoltan,; G. Nakatsukasa,; M. Errico,; J. P. Fleurial,; B. B. Iversen,; G. J. Snyder, Measurement of the electrical resistivity and Hall coefficient at high temperatures. Rev. Sci. Instrum. 2012, 83, 123902.
[51]
C. Drasar,; P. Ruleova,; L. Benes,; P. Lostak, Preparation and transport properties of Bi2O2Se single crystals. J. Electron. Mater. 2012, 41, 2317-2321.
[52]
X. Tan,; Y. C. Liu,; K. R. Hu,; G. K. Ren,; Y. M. Li,; R. Liu,; Y. H. Lin,; J. L. Lan,; C. W. Nan, Synergistically optimizing electrical and thermal transport properties of Bi2O2Se ceramics by Te-substitution. J. Am. Ceram. Soc. 2018, 101, 326-333.
[53]
C. M. Zhong,; V. K. Sangwan,; J. Kang,; J. Luxa,; Z. Sofer,; M. C. Hersam,; E. A. Weiss, Hot carrier and surface recombination dynamics in layered InSe crystals. J. Phys. Chem. Lett. 2019, 10, 493-499.
Nano Research
Pages 1961-1966
Cite this article:
Sangwan VK, Kang J, Lam D, et al. Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz. Nano Research, 2021, 14(6): 1961-1966. https://doi.org/10.1007/s12274-020-3059-3
Topics:
Part of a topical collection:

860

Views

20

Crossref

N/A

Web of Science

16

Scopus

2

CSCD

Altmetrics

Received: 24 June 2020
Revised: 26 July 2020
Accepted: 14 August 2020
Published: 15 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return