AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel approach towards molecular memory device in gate tunable structure of MoS2-graphene

Rahul TripathiAbha Misra( )
Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
Show Author Information

Graphical Abstract

Abstract

Molecular interaction in two-dimensional (2D) van der Waals (vdW) interfaces has drawn tremendous attention for extraordinary materials characteristics. So far sensing characteristics of molecular interaction has been exploited extensively to reach the detection limit to a few parts-per-billion (ppb) of molecules and far less attention is given to the evolution of persistent current state due to the molecular exposure. Our study focuses on molecular memory operation of MoS2-graphene heterostructure based field effect transistor. Metastable resistance state of the device due to the external perturbation of molecules is tuned to get a nearly relaxation free current state at much lower molecular concentration of 10 ppb to facilitate non-volatile memory features for molecular memory operation. An ultrafast switching operation in milli-second order is achieved at room temperature for the fastest recovery obtained so far in any molecular sensor. The process is co-controlled both by molecular as well as external charge density.

Electronic Supplementary Material

Download File(s)
12274_2020_3063_MOESM1_ESM.pdf (2.1 MB)

References

[1]
S. Tiwari,; F. Rana,; H. Hanafi,; A. Hartstein,; E. F. Crabbé,; K. Chan, A silicon nanocrystals based memory. Appl. Phys. Lett. 1996, 68, 1377-1379.
[2]
R. S. Potember.;; T. O. Poehler,; D. O. Cowan,; A. N. Bloch, Electrical switching and memory phenomena in semiconducting organic charge-transfer complexes. In The Physics and Chemistry of Low Dimensional Solids. L. Alcácer,, Ed.; Springer: Dordrecht, 1980; pp. 419-428.
[3]
C. Li,; W. Fan,; B. Lei,; D. H. Zhang,; S. Han,; T. Tang,; X. L. Liu,; Z. Q. Liu,; S. Asano,; M. Meyyappan, et al. Multilevel memory based on molecular devices. Appl. Phys. Lett. 2004, 84, 1949-1951.
[4]
X. F. Duan,; Y. Huang,; C. M. Lieber, Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487-490.
[5]
S. Bertolazzi,; D. Krasnozhon,; A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246-3252.
[6]
C. S. Liu,; X. Yan,; X. F. Song,; S. J. Ding,; D. W. Zhang,; P. Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.
[7]
J. Borghetti,; V. Derycke,; S. Lenfant,; P. Chenevier,; A. Filoramo,; M. Goffman,; D. Vuillaume,; J. P. Bourgoin, Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535-2540.
[8]
A. Star,; Y. Lu,; K. Bradley,; G. Grüner, Nanotube optoelectronic memory devices. Nano Lett. 2004, 4, 1587-1591.
[9]
Q. S. Wang,; Y. Wen,; K. M. Cai,; R. Q. Cheng,; L. Yin,; Y. Zhang,; J. Li,; Z. X. Wang,; F. Wang,; F. M. Wang, et al. A. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.
[10]
K. Roy,; M. Padmanabhan,; S. Goswami,; T. P. Sai,; G. Ramalingam,; S. Raghavan,; A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
[11]
Z. M. Liu,; A. A. Yasseri,; J. S. Lindsey,; D. F. Bocian, Molecular memories that survive silicon device processing and real-world operation. Science 2003, 302, 1543-1545.
[12]
M. Mas-Torrent,; C. Rovira,; J. Veciana, Surface-confined electroactive molecules for multistate charge storage information. Adv. Mater. 2013, 25, 462-468.
[13]
Y. D. Zhao,; S. Bertolazzi,; M. S. Maglione,; C. Rovira,; M. Mas-Torrent,; P. Samorì, Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv. Mater. 2020, 32, 2000740.
[14]
D. J. Late,; Y. K. Huang,; B. Liu,; J. Acharya,; S. N. Shirodkar,; J. J. Luo,; A. M. Yan,; D. Charles,; U. V. Waghmare,; V. P. Dravid, et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879-4891.
[15]
B. L. Liu,; L. Chen,; G. Liu,; A. N. Abbas,; M. Fathi,; C. W. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304-5314.
[16]
H. Li,; Z. Y. Yin,; Q. Y. He,; H. Li,; X. Huang,; G. Lu,; D. W. H. Fam,; A. I. Y. Tok,; Q. Zhang,; H. Zhang, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.
[17]
B. Cho,; J. Yoon,; S. K. Lim,; A. R. Kim,; D. H. Kim,; S. G. Park,; J. D. Kwon,; Y. J. Lee,; K. H. Lee,; B. H. Lee, et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775-16780.
[18]
R. Kumar,; N. Goel,; M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744-1752.
[19]
H. Long,; A. Harley-Trochimczyk,; T. Pham,; Z. R. Tang,; T. L. Shi,; A. Zettl,; C. Carraro,; M. A. Worsley,; R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158-5165.
[20]
H. Long,; L. Chan,; A. Harley-Trochimczyk,; L. E. Luna,; Z. R. Tang,; T. L. Shi,; A. Zettl,; C. Carraro,; M. A. Worsley,; R. Maboudian, 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv. Mater. Interfaces 2017, 4, 1700217.
[21]
S. Y. Cho,; S. J. Kim,; Y. Lee,; J. S. Kim,; W. B. Jung,; H. W. Yoo,; J. Kim,; H. T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 2015, 9, 9314-9321.
[22]
B. Cho,; M. G. Hahm,; M. Choi,, J. Yoon,; A. R. Kim,; Y. J. Lee,; S. G. Park,; J. D. Kwon,; C. S. Kim,; M. Song, et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.
[23]
R. T. Lv,; G. G. Chen,; Q. Li,; A. McCreary,; A. Botello-Méndez,; S. V. Morozov,; L. B. Liang,; X. Declerck,; N. Perea-López,; D. A. Cullen, et al. Ultrasensitive gas detection of large-area boron-doped graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 14527-14532.
[24]
G. H. Lu,; S. Park,; K. H. Yu,; R. S. Ruoff,; L. E. Ocola,; D. Rosenmann,; J. H. Chen, Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 2011, 5, 1154-1164.
[25]
G. Yang,; C. Lee,; J. Kim,; F. Ren,; S. J. Pearton, Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 2013, 15, 1798-1801.
[26]
J. D. Fowler,; M. J. Allen,; V. C. Tung,; Y. Yang,; R. B. Kaner,; B. H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301-306.
[27]
F. Yavari,; E. Castillo,; H. Gullapalli,; P. M. Ajayan,; N. Koratkar, High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120.
[28]
F. K. Perkins,; A. L. Friedman,; E. Cobas,; P. M. Campbell,; G. G. Jernigan,; B. T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.
[29]
B. Cho,; A. R. Kim,; Y. Park,; J. Yoon,; Y. J. Lee,; S. Lee,; T. J. Yoo,; C. G. Kang,; B. H. Lee,; H. C. Ko, et al. Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces 2015, 7, 2952-2959.
[30]
J. S. Kim,; H. W. Yoo,; H. O. Choi,; H. T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 2014, 14, 5941-5947.
[31]
Q. Yue,; Z. Z. Shao,; S. L. Chang,; J. B. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425.
[32]
Z. M. Ao,; S. Li,; Q. Jiang, Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun. 2010, 150, 680-683.
[33]
X. F. Zhu,; L. Wang,; L. F. Chen, Adsorption and dissociation of O2 on MoSe2 and MoTe2 monolayers: Ab initio study. Int. J. Mod. Phys. B 2014, 28, 1450195.
[34]
J. Sun,; M. Muruganathan,; H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2016, 2, e1501518.
[35]
M. S. Fuhrer,; J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146-147.
[36]
B. Radisavljevic,; A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.
[37]
J. Lee,; S. Pak,; Y. W. Lee,; Y. Cho,; J. Hong,; P. Giraud,; H. S. Shin,; S. M. Morris,; J. I. Sohn,; S. N. Cha, et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 2017, 8, 14734.
[38]
S. D. Lei,; F. F. Wen,; B. Li,; Q. Z. Wang,; Y. H. Huang,; Y. J. Gong,; Y. M. He,; P. Dong,; J. Bellah,; A. George, et al. Optoelectronic memory using two-dimensional materials. Nano Lett. 2014, 15, 259-265.
[39]
D. Li,; M. Y. Chen,; Z. Z. Sun,; P. Yu,; Z. Liu,; P. M. Ajayan,; Z. X. Zhang, Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901-906.
[40]
Z. Y. Fan,; J. G. Lu, Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510.
[41]
Y. W. Chang,; J. S. Oh,; S. H. Yoo,; H. H. Choi,; K. H. Yoo, Electrically refreshable carbon-nanotube-based gas sensors. Nanotechnology 2007, 18, 435504.
[42]
H. Geistlinger, Electron theory of thin-film gas sensors. Sens. Actuators B: Chem. 1993, 17, 47-60.
[43]
H. Tabata,; Y. Sato,; K. Oi,; O. Kubo,; M. Katayama, Bias-and gate-tunable gas sensor response originating from modulation in the Schottky barrier height of a graphene/MoS2 van der Waals heterojunction. ACS Appl. Mater. Interfaces 2018, 10, 38387-38393.
[44]
V. E. Henrich,; P. A. Cox, The Surface Science of Metal Oxides; Cambridge University Press: New York, 1994.
[45]
Y. Zhang,; A. Kolmakov,; S. Chretien,; H. Metiu,; M. Moskovits, Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 2004, 4, 403-407.
[46]
F. Schedin,; A. K. Geim,, S. V. Morozov;; E. W. Hill,; P. Blake,; M. I. Katsnelson,; K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.
[47]
N. Ma,; D. Jena, Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater. 2015, 2, 015003.
[48]
S. J. Zhao,; J. M. Xue,; W. Kang, Gas adsorption on MoS2 monolayer from first-principles calculations. Chem. Phys. Lett. 2014, 595-596, 35-42.
[49]
A. M. Andringa,; J. R. Meijboom,; E. C. Smits,; S. G. Mathijssen,; P. W. M. Blom,; D. M. De Leeuw, Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors. Adv. Funct. Mater. 2011, 21, 100-107.
[50]
A. M. Andringa,; W. S. Christian Roelofs,; M. Sommer,, M. Thelakkat,; M. Kemerink,; D. M. de Leeuw, Localizing trapped charge carriers in NO2 sensors based on organic field-effect transistors. Appl. Phys. Lett. 2012, 101, 153302.
Nano Research
Pages 177-184
Cite this article:
Tripathi R, Misra A. A novel approach towards molecular memory device in gate tunable structure of MoS2-graphene. Nano Research, 2021, 14(1): 177-184. https://doi.org/10.1007/s12274-020-3063-7
Topics:

653

Views

6

Crossref

0

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 10 June 2020
Revised: 03 August 2020
Accepted: 20 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return