Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications

Bo-Yao Lu§Guan-Yin Zhu§Chen-Hao YuGe-Yun ChenChao-Liang ZhangXin ZengQian-Ming ChenQiang Peng()
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

§ Bo-Yao Lu and Guan-Yin Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Developing antibiotics-independent antibacterial agents is of great importance since antibiotic therapy faces great challenges from drug resistance. Graphene oxide (GO) is a promising agent due to its natural antibacterial mechanisms, such as sharp edge-mediated cutting effect. However, the antibacterial activity of GO is limited by its negative charge and low photothermal effect. Herein, the amino-functionalized GO nanosheets (AGO) with unique three-in-one properties were synthesized. Three essential properties (positive charge, strong photothermal effect, and natural cutting effect) were integrated into AGO. The positive charge (30 mV) rendered AGO a strong interaction force with model pathogen Streptococcus mutans (330 nN). The natural cutting effect of 100 μg·mL-1 AGO caused 27% loss of bacterial viability after incubation for 30 min. Most importantly, upon the near-infrared irradiation for just 5 min, the three-in-one properties of AGO caused 98% viability loss. In conclusion, the short irradiation period and the tunable antibacterial activity confer the three-in-one AGO a great potential for clinical use.

Electronic Supplementary Material

Download File(s)
12274_2020_3064_MOESM1_ESM.pdf (2.3 MB)

References

[1]
M. Chen,; X. S. Qin,; G. M. Zeng, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. 2017, 35, 836-846.
[2]
Z. Q. Shi,; Y. Zhou,; T. J. Fan,; Y. X. Lin,; H. Zhang,; L. Mei, Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020, 1, 32-47.
[3]
Y. Yao,; W. Liao,; R. C. Yu,; Y. Du,; T. Zhang,; Q. Peng, Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine 2018, 13, 1623-1638.
[4]
C. Ligorio,; M. Zhou,; J. K. Wychowaniec,; X. Y. Zhu,; C. Bartlam,; A. F. Miller,; A. Vijayaraghavan,; J. A. Hoyland,; A. Saiani, Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater. 2019, 92, 92-103.
[5]
N. F. Chiu,; C. C. Chen,; C. D. Yang,; Y. S. Kao,; W. R. Wu, Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res. Lett. 2018, 13, 152.
[6]
Y. L. Zhou,; W. J. Jiang,; H. W. Wu,; F. Liu,; H. S. Yin,; N. Lu,; S. Y. Ai, Amplified electrochemical immunoassay for 5-methylcytosine using a nanocomposite prepared from graphene oxide, magnetite nanoparticles and β-cyclodextrin. Microchim. Acta 2019, 186, 488.
[7]
Z. Q. Shi,; Q. Q. Li,; L. Mei, pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020, 31, 1345-1356.
[8]
J. Z. Liu,; J. Dong,; T. Zhang,; Q. Peng, Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release 2018, 286, 64-73.
[9]
L. Hong,; S. H. Luo,; C. H. Yu,; Y. Xie,; M. Y. Xia,; G. Y. Chen,; Q. Peng, Functional nanomaterials and their potential applications in antibacterial therapy. Pharm. Nanotechnol. 2019, 7, 129-146.
[10]
M. Y. Xia,; Y. Xie,; C. H. Yu,; G. Y. Chen,; Y. H. Li,; T. Zhang,; Q. Peng, Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. J. Control. Release 2019, 307, 16-31.
[11]
H. E. Karahan,; C. Wiraja,; C. J. Xu,; J. Wei,; Y. L. Wang,; L. Wang,; F. Liu,; Y. Chen, Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv. Healthc. Mater. 2018, 7, 1701406.
[12]
C. H. Yu,; G. Y. Chen,; M. Y. Xia,; Y. Xie,; Y. Q. Chi,; Z. Y. He,; C. L. Zhang,; T. Zhang,; Q. M. Chen,; Q. Peng, Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf. B: Biointerfaces 2020, 191, 111009.
[13]
S. P. Wang,; Y. Ge,; X. D. Zhou,; H. H. Xu,; M. D. Weir,; K. K. Zhang,; H. H. Wang,; M. Hannig,; S. Rupf,; Q. Li, et al. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms. Int. J. Oral Sci. 2016, 8, 76-83.
[14]
G. Y. Zhu,; B. Y. Lu,; T. X. Zhang,; T. Zhang,; C. L. Zhang,; Y. Q. Li,; Q. Peng, Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano-bacteria interactions. Nanomedicine 2018, 13, 1093-1106.
[15]
Y. H. Li,; Y. Q. Chi,; C. H. Yu,; Y. Xie,; M. Y. Xia,; C. L. Zhang,; X. L. Han,; Q. Peng, Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohydr. Polym. 2020, 241, 116386.
[16]
M. C. Wu,; A. R. Deokar,; J. H. Liao,; P. Y. Shih,; Y. C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7, 1281-1290.
[17]
J. T. Robinson,; S. M. Tabakman,; Y. Y. Liang,; H. L. Wang,; H. Sanchez Casalongue,; D. Vinh,; H. J. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825-6831.
[18]
J. W. Luo,; W. J. Deng,; F. Yang,; Z. Q. Wu,; M. T. Huang,; M. Gu, Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria. Carbohydr. Polym. 2018, 198, 206-214.
[19]
S. M. Liu,; S. T. Cao,; J. Y. Guo,; L. Q. Luo,; Y. Zhou,; C. L. Lin,; J. Y. Shi,; C. H. Fan,; M. Lv,; L. H. Wang, Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. Nanoscale 2018, 10, 19603-19611.
[20]
M. Wierzbicki,; S. Jaworski,; E. Sawosz,; A. Jung,; G. Gielerak,; H. Jaremek,; W. Łojkowski,; B. Woźniak,; L. Stobiński,; A. Małolepszy,; A. Chwalibog, Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nanoplatform. Nanoscale Res. Lett. 2019, 14, 320.
[21]
B. Ashrafi,; M. Rashidipour,; A. Marzban,; S. Soroush,; M. Azadpour,; S. Delfani,; P. Ramak, Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr. Polym. 2019, 212, 142-149.
[22]
Y. R. Song,; H. S. Na,; E. Park,; M. H. Park,; H. A. Lee,; J. Chung, Streptococcus mutans activates the AIM2, NLRP3 and NLRC4 inflammasomes in human THP-1 macrophages. Int. J. Oral Sci. 2018, 10, 23.
[23]
M. M. Wang,; S. Chen,; D. D. Zhang,; Y. L. Yu,; J. H. Wang, Immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide for selective extraction of phosphoproteins. Microchim. Acta 2018, 185, 553.
[24]
T. Zhang,; G. Y. Zhu,; C. H. Yu,; Y. Xie,; M. Y. Xia,; B. Y. Lu,; X. F. Fei,; Q. Peng, The UV absorption of graphene oxide is size-dependent: Possible calibration pitfalls. Microchim. Acta 2019, 186, 207.
[25]
T. X. Zhang,; G. Y. Zhu,; B. Y. Lu,; C. L. Zhang,; Q. Peng, Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine 2017, 12, 2757-2769.
[26]
Q. Peng,; J. Y. Liu,; T. Zhang,; T. X. Zhang,; C. L. Zhang,; H. L. Mu, Digestive enzyme corona formed in the gastrointestinal tract and its impact on epithelial cell uptake of nanoparticles. Biomacromolecules 2019, 20, 1789-1797.
[27]
S. B. Liu,; M. Hu,; T. H. Zeng,; R. Wu,; R. R. Jiang,; J. Wei,; L. Wang,; J. Kong,; Y. Chen, Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364-12372.
[28]
F. Perreault,; A. F. de Faria,; S. Nejati,; M. Elimelech, Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226-7236.
[29]
S. K. Singh,; M. K. Singh,; P. P. Kulkarni,; V. K. Sonkar,; J. J. A. Grácio,; D. Dash, Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 2012, 6, 2731-2740.
[30]
X. R. Shao,; X. Q. Wei,; S. Zhang,; N. Fu,; Y. F. Lin,; X. X. Cai,; Q. Peng, Effects of micro-environmental pH of liposome on chemical stability of loaded drug. Nanoscale Res. Lett. 2017, 12, 504.
[31]
X. Q. Wei,; L. Y. Hao,; X. R. Shao,; Q. Zhang,; X. Q. Jia,; Z. R. Zhang,; Y. F. Lin,; Q. Peng, Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl. Mater. Interfaces 2015, 7, 13367-13374.
[32]
T. Kim,; Q. Z. Zhang,; J. Li,; L. F. Zhang,; J. V. Jokerst, A gold/ silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano 2018, 12, 5615-5625.
[33]
X. Li,; M. L. Qi,; X. L. Sun,; M. D. Weir,; F. R. Tay,; T. W. Oates,; B. Dong,; Y. M. Zhou,; L. Wang,; H. H. K. Xu, Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019, 94, 627-643.
[34]
Y. Yang,; G. P. Xu,; J. D. Liang,; Y. He,; L. Xiong,; H. Li,; D. Bartlett,; Z. X. Deng,; Z. J. Wang,; X. Xiao, DNA Backbone Sulfur-Modification Expands Microbial Growth Range under Multiple Stresses by its anti-oxidation function. Sci. Rep. 2017, 7, 3516.
[35]
J. F. Davidson,; B. Whyte,; P. H. Bissinger,; R. H. Schiestl, Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93, 5116-5121.
[36]
R. D. Sleator,; C. Hill, Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 2002, 26, 49-71.
[37]
A. L. Koch,; R. J. Doyle, The growth strategy of the Gram-positive rod. FEMS Microbiol. Lett. 1986, 1, 247-254.
[38]
J. J. Qiu,; L. Liu,; H. Q. Zhu,; X. Y. Liu, Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact. Mater. 2018, 3, 341-346.
[39]
I. E. Mejías Carpio,; C. M. Santos,; X. Wei,; D. F. Rodrigues, Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012, 4, 4746-4756.
Nano Research
Pages 185-190
Cite this article:
Lu B-Y, Zhu G-Y, Yu C-H, et al. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Research, 2021, 14(1): 185-190. https://doi.org/10.1007/s12274-020-3064-6
Topics:
Metrics & Citations  
Article History
Copyright
Return