Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
All-inorganic α-CsPbBrxI3-x perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode (LED) applications. Currently, the CsPbBrxI3-x LEDs based on nano-sized α-CsPbBrxI3-x crystallites have been fabricated mainly via the classical colloidal route including a tedious procedure of nanocrystal synthesis, purification, ligand or anion exchange, film casting, etc. With the usually adopted conventional LED device structure, only high turn-on voltages (> 2.7) have been achieved for CsPbBrxI3-x LEDs. Moreover, this mix-halide system may suffer from severe spectra-shift under bias. In this report, CsPbBrxI3-x thin films featuring nano-sized crystallites are prepared by incorporating multiple ammonium ligands in a one-step spin-coating route. The multiple ammonium ligands constrain the growth of CsPbBrxI3-x nanograins. Such CsPbBrxI3-x thin films benefit from quantum confinement. The corresponding CsPbBrxI3-x LEDs, adopting a conventional LED structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/CsPbBrxI3-x/[