AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes

Maowei JiangZhanhao HuLuis K. OnoYabing Qi( )
Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
Show Author Information

Graphical Abstract

Abstract

All-inorganic α-CsPbBrxI3-x perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode (LED) applications. Currently, the CsPbBrxI3-x LEDs based on nano-sized α-CsPbBrxI3-x crystallites have been fabricated mainly via the classical colloidal route including a tedious procedure of nanocrystal synthesis, purification, ligand or anion exchange, film casting, etc. With the usually adopted conventional LED device structure, only high turn-on voltages (> 2.7) have been achieved for CsPbBrxI3-x LEDs. Moreover, this mix-halide system may suffer from severe spectra-shift under bias. In this report, CsPbBrxI3-x thin films featuring nano-sized crystallites are prepared by incorporating multiple ammonium ligands in a one-step spin-coating route. The multiple ammonium ligands constrain the growth of CsPbBrxI3-x nanograins. Such CsPbBrxI3-x thin films benefit from quantum confinement. The corresponding CsPbBrxI3-x LEDs, adopting a conventional LED structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/CsPbBrxI3-x/[6,6]-phenyl C61 butyric acid methyl ester (PCBM)/ bathocuproine (BCP)/Al, emit pure-red color at Commission Internationale de l'éclairage (CIE) coordinates of (0.709, 0.290), (0.711, 0.289), etc., which represent the highest color-purity for reported pure-red perovskite LEDs and meet the Rec. 2020 requirement at CIE (0.708, 0.292) very well. The CsPbBrxI3-x LED shows a low turn-on voltage of 1.6 V, maximum external quantum efficiency of 8.94%, high luminance of 2,859 cd·m-2, and good color stability under bias.

Electronic Supplementary Material

Download File(s)
12274_2020_3065_MOESM1_ESM.pdf (3.3 MB)

References

[1]
Y. Cao,; N. N. Wang,; H. Tian,; J. S. Guo,; Y. Q. Wei,; H. Chen,; Y. F. Miao,; W. Zou,; K. Pan,; Y. R. He, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249-253.
[2]
K. B. Lin,; J. Xing,; L. N. Quan,; F. P. G. De Arquer,; X. W. Gong,; J. X. Lu,; L. Q. Xie,; W. J. Zhao,; D. Zhang,; C. Z. Yan, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245-248.
[3]
Y. Liu,; J. Y. Cui,; K. Du,; H. Tian,; Z. F. He,; Q. H. Zhou,; Z. L. Yang,; Y. Z. Deng,; D. Chen,; X. B. Zuo, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 2019, 13, 760-764.
[4]
X. F. Zhao,; Z. K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 2020, 14, 215-218.
[5]
T. Chiba,; Y. Hayashi,; H. Ebe,; K. Hoshi,; J. Sato,; S. Sato,; Y. J. Pu,; S. Ohisa,; J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681-687.
[6]
J. N. Yang,; Y. Song,; J. S. Yao,; K. H. Wang,; J. J. Wang,; B. S. Zhu,; M. M. Yao,; S. U. Rahman,; Y. F. Lan,; F. J. Fan, et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 2956-2967.
[7]
Y. Ke,; N. N. Wang,; D. C Kong,; Y. Cao,; Y. R He,; L. Zhu,; Y. M. Wang,; C. Xue,; Q. M. Peng,; F. Gao, et al. Defect passivation for red perovskite light-emitting diodes with improved brightness and stability. J. Phys. Chem. Lett. 2019, 10, 380-385.
[8]
J. A. Steele,; H. D. Jin,; I. Dovgaliuk,; R. F. Berger,; T. Braeckevelt,; H. F. Yuan,; C. Martin,; E. Solano,; K. Lejaeghere,; S. M. J. Rogge, et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 2019, 365, 679-684.
[9]
Y. F. Miao,; Y. Ke,; N. N. Wang,; W. Zou,; M. M. Xu,; Y. Cao,; Y. Sun,; R. Yang,; Y. Wang,; Y. F. Tong, et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 2019, 10, 3624.
[10]
Y. Wang,; M. I. Dar,; L. K. Ono,; T. Y. Zhang,; M. Kan,; Y. W. Li,; L. J. Zhang,; X. T. Wang,; Y. G. Yang,; X. Y. Gao, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 2019, 365, 591-595.
[11]
A. Swarnkar,; A. R. Marshall,; E. M. Sanehira,; B. D. Chernomordik,; D. T. Moore,; J. A. Christians,; T. Chakrabarti,; J. M. Luther, Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92-95.
[12]
Y. Wang,; T. Zhang,; F. Xu,; Y. H. Li,; Y. X. Zhao, A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells. Solar RRL 2018, 2, 1700180.
[13]
Q. S. Ma,; S. J. Huang,; X. M. Wen,; M. A. Green,; A. W. Y. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy. Mater. 2016, 6, 1502202.
[14]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[15]
G. P. Li,; J. S. Huang,; Y. Q. Li,; J. X. Tang,; Y. Jiang, Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Res. 2019, 12, 109-114.
[16]
J. H. Li,; L. M. Xu,; T. Wang,; J. Z. Song,; J. W. Chen,; J. Xue,; Y. H. Dong,; B. Cai,; Q. S. Shan,; B. N. Han, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.
[17]
Y. H. Kim,; C. Wolf,; Y. T. Kim,; H. Cho,; W. Kwon,; S. Do,; A. Sadhanala,; C. G. Park,; S. W. Rhee,; S. H. Im, et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size. ACS Nano 2017, 11, 6586-6593.
[18]
W. L. Zheng,; Z. C. Li,; C. Y. Zhang,; B. Wang,; Q. G. Zhang,; Q. Wan,; L. Kong,; L. Li, Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019, 12, 1461-1465.
[19]
B. N. Han,; B. Cai,; Q. S. Shan,; J. Z. Song,; J. H. Li,; F. J. Zhang,; J. W. Chen,; T. Fang,; Q. M. Ji,; X. B. Xu, et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 2018, 28, 1804285.
[20]
X. Y. Shen,; Y. Zhang,; S. V. Kershaw,; T. S. Li,; C. C. Wang,; X. Y. Zhang,; W. Y. Wang,; D. G. Li,; Y. H. Wang,; M. Lu, et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 2019, 19, 1552-1559.
[21]
J. S. Yao,; J. Ge,; K. H. Wang,; G. Z. Zhang,; B. S. Zhu,; C. Chen,; Q. Zhang,; Y. Luo,; S. H. Yu,; H. B. Yao, Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069-2079.
[22]
M. Lu,; X. Y. Zhang,; Y. Zhang,; J. Guo,; X. Y. Shen,; W. W. Yu,; A. L. Rogach, Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.
[23]
X. Y. Zhang,; C. Sun,; Y. Zhang,; H. Wu,; C. Y. Ji,; Y. H. Chuai,; P. Wang,; S. P. Wen,; C. F. Zhang,; W. W. Yu, Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 2016, 7, 4602-4610.
[24]
J. Pan,; Y. Q. Shang,; J. Yin,; M. De Bastiani,; W. Peng,; I. Dursun,; L. Sinatra,; A. M. El-Zohry,; M. N. Hedhili,; A. H. Emwas, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562-565.
[25]
R. D. Zhu,; Z. Y. Luo,; H. W. Chen,; Y. J. Dong,; S. T. Wu, Realizing rec. 2020 color gamut with quantum dot displays. Opt. Express 2015, 23, 23680-23693.
[26]
J. Chang,; S. T. Zhang,; N. N. Wang,; Y. Sun,; Y. Q. Wei,; R. Z. Li,; C. Yi,; J. P. Wang,; W. Huang, Enhanced performance of red perovskite light-emitting diodes through the dimensional tailoring of perovskite multiple quantum wells. J. Phys. Chem. Lett. 2018, 9, 881-886.
[27]
P. Vashishtha,; J. E. Halpert, Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 2017, 29, 5965-5973.
[28]
G. F. Samu,; Á. Balog,; F. De Angelis,; D. Meggiolaro,; P. V. Kamat,; C. Janáky, Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J. Am. Chem. Soc. 2019, 141, 10812-10820.
[29]
A. J. Knight,; A. D. Wright,; J. B. Patel,; D. P. McMeekin,; H. J. Snaith,; M. B. Johnston,; L. M. Herz, Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 2019, 4, 75-84.
[30]
Z. F. He,; Y. Liu,; Z. L. Yang,; J. Li,; J. Y. Cui,; D. Chen,; Z. S. Fang,; H. P. He,; Z. Z. Ye,; H. M. Zhu, et al. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics 2019, 6, 587-594.
[31]
J. Xing,; Y. B. Zhao,; M. Askerka,; L. N. Quan,; X. W. Gong,; W. J. Zhao,; J. X. Zhao,; H. R. Tan,; G. K. Long,; L. Gao, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9, 3541.
[32]
M. W. Jiang,; Z. H. Hu,; Z. H. Liu,; Z. F. Wu,; L. K. Ono,; Y. B. Qi, Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 2019, 4, 2731-2738.
[33]
Z. G. Xiao,; R. A. Kerner,; N. Tran,; L. F. Zhao,; G. D. Scholes,; B. P. Rand, Engineering perovskite nanocrystal surface termination for light-emitting diodes with external quantum efficiency exceeding 15%. Adv. Funct. Mater. 2019, 29, 1807284.
[34]
Z. G. Xiao,; R. A. Kerner,; L. F. Zhao,; N. L. Tran,; K. M. Lee,; T. W. Koh,; G. D. Scholes,; B. P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108-115.
[35]
F. M. Li,; Y. H. Pei,; F. Xiao,; T. X. Zeng,; Z. Yang,; J. J. Xu,; J. Sun,; B. Peng,; M. Z. Liu, Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites. Nanoscale 2018, 10, 6318-6322.
[36]
J. J. Si,; Y. Liu,; Z. F. He,; H. Du,; K. Du,; D. Chen,; J. Li,; M. M. Xu,; H. Tian,; H. P. He, et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 2017, 11, 11100-11107.
[37]
Z. G. Xiao,; L. F. Zhao,; N. L. Tran,; Y. L. Lin,; S. H. Silver,; R. A. Kerner,; N. Yao,; A. Kahn,; G. D. Scholes,; B. P. Rand, Mixed-halide perovskites with stabilized bandgaps. Nano Lett. 2017, 17, 6863-6869.
[38]
H. Lin,; J. Mao,; M. C. Qin,; Z. L. Song,; W. J. Yin,; X. H. Lu,; W. C. H. Choy, Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale 2019, 11, 16907-16918.
[39]
Y. Q. Shang,; G. Li,; W. M. Liu,; Z. J. Ning, Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1801193.
[40]
Y. Tian,; C. K. Zhou,; M. Worku,; X. Wang,; Y. C. Ling,; H. W. Gao,; Y. Zhou,; Y. Miao,; J. J. Guan,; B. W. Ma, Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1707093.
[41]
Y. Yang,; H. Y. Qin,; M. W. Jiang,; L. Lin,; T. Fu,; X. L. Dai,; Z. X. Zhang,; Y. Niu,; H. J. Cao,; Y. Z. Jin, et al. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability. Nano Lett. 2016, 16, 2133-2138.
[42]
O. Malinkiewicz,; A. Yella,; Y. H. Lee,; G. M. Espallargas,; M. Graetzel,; M. K. Nazeeruddin,; H. J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128-132.
[43]
C. L. Chen,; S. S. Zhang,; S. H. Wu,; W. J. Zhang,; H. M. Zhu,; Z. Z. Xiong,; Y. J. Zhang,; W. Chen, Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819-35826.
[44]
J. X. Xu,; A. Buin,; A. H. Ip,; W. Li,; O. Voznyy,; R. Comin,; M. J. Yuan,; S. Jeon,; Z. J. Ning,; J. J. McDowell, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.
[45]
Y. C. Shao,; Z. G. Xiao,; C. Bi,; Y. B. Yuan,; J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.
[46]
Q. Wang,; Y. C. Shao,; Q. F. Dong,; Z. G. Xiao,; Y. B. Yuan,; J. S. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 2014, 7, 2359-2365.
[47]
J. P. Wang,; N. N. Wang,; Y. Z. Jin,; J. J. Si,; Z. K. Tan,; H. Du,; L. Cheng,; X. L. Dai,; S. Bai,; H. P. He, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 2015, 27, 2311-2316.
[48]
J. Q. Li,; X. Shan,; S. G. R. Bade,; T. Geske,; Q. L. Jiang,; X. Yang,; Z. B. Yu, Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness. J. Phys. Chem. Lett. 2016, 7, 4059-4066.
[49]
B. S. Mashford,; M. Stevenson,; Z. Popovic,; C. Hamilton,; Z. Q. Zhou,; C. Breen,; J. Steckel,; V. Bulovic,; M. Bawendi,; S. Coe-Sullivan, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407-412.
[50]
S. Pradhan,; M. Dalmases,; G. Konstantatos, Origin of the below-bandgap turn-on voltage in light-emitting diodes and the high Voc in solar cells comprising colloidal quantum dots with an engineered density of states. J. Phys. Chem. Lett. 2019, 10, 3029-3034.
[51]
R. A. Scheidt,; C. Atwell,; P. V. Kamat, Tracking transformative transitions: From CsPbBr3 nanocrystals to bulk perovskite films. ACS Mater. Lett. 2019, 1, 8-13.
[52]
Y. Zou,; Z. Yuan,; S. Bai,; F. Gao,; B. Sun, Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Mater. Today Nano 2019, 5, 100028.
Nano Research
Pages 191-197
Cite this article:
Jiang M, Hu Z, Ono LK, et al. CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Research, 2021, 14(1): 191-197. https://doi.org/10.1007/s12274-020-3065-5
Topics:

1102

Views

42

Crossref

0

Web of Science

44

Scopus

6

CSCD

Altmetrics

Received: 17 June 2020
Revised: 20 August 2020
Accepted: 22 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return