AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy

Qingfei Zhang1,2Gaizhen Kuang3Shasha He1( )Sha Liu1,2Hongtong Lu1,2Xiaoyuan Li1Dongfang Zhou1,4( )Yubin Huang1,2( )
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
Show Author Information

Graphical Abstract

Abstract

CRISPR/Cas9 system has become a promising gene editing tool for cancer treatment. However, development of a simple and effective nanocarrier to incorporate CRISPR/Cas9 system and chemotherapeutic drugs to concurrently tackle the biological safety and packaging capacity of viral vectors and combine gene editing-chemo for cancer therapy still remains challenges. Herein, a chain-shattering Pt(IV)-backboned polymeric nanoplatform is developed for the delivery of EZH2-targeted CRISPR/Cas9 system (NPCSPt/pEZH2) and synergistic treatment of prostate cancer. The pEZH2/Pt(II) could be effectively triggered to unpack/release from NPCSPt/pEZH2 in a chain-shattering manner in cancer cells. The EZH2 gene disruption efficiency could be achieved up to 32.2% of PC-3 cells in vitro and 21.3% of tumor tissues in vivo, leading to effective suppression of EZH2 protein expression. Moreover, significant H3K27me3 downregulation could occur after EZH2 suppression, resulting in a more permissive chromatin structure that increases the accessibility of released Pt(II) to nuclear DNA for enhanced apoptosis. Taken together, substantial proliferation inhibition of prostate cancer cells and further 85.4% growth repression against subcutaneous xenograft tumor could be achieved. This chain-shattering Pt(IV)-backboned polymeric nanoplatform system not only provides a prospective nanocarrier for CRISPR/Cas9 system delivery, but also broadens the potential of combining gene editing-chemo synergistic cancer therapy.

Electronic Supplementary Material

Download File(s)
12274_2020_3066_MOESM1_ESM.pdf (5.7 MB)

References

[1]
E. Bender, Gene therapy: Industrial strength. Nature 2016, 537, S57-S59.
[2]
Y. X. Wu,; J. D. Zheng,; Q. Zeng,; T. Zhang,; D. Xing, Light- responsive charge-reversal nanovector for high-efficiency in vivo CRISPR/Cas9 gene editing with controllable location and time. Nano Res. 2020, 13, 2399-2406.
[3]
R. C. Mulligan, The basic science of gene therapy. Science 1993, 260, 926-932.
[4]
J. A. Doudna,; E. Charpentier, The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.
[5]
L. Cong,; F. A. Ran,; D. Cox,; S. L. Lin,; R. Barretto,; N. Habib,; P. D. Hsu,; X. B. Wu,; W. Y. Jiang,; L. A. Marraffini, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819-823.
[6]
F. A. Ran,; P. D. Hsu,; J. Wright,; V. Agarwala,; D. A. Scott,; F. Zhang, Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281-2308.
[7]
H. B. Tang,; J. B. Shrager, CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: A personalized molecular surgical therapy. EMBO Mol. Med. 2016, 8, 83-85.
[8]
R. J. Platt,; S. D. Chen,; Y. Zhou,; M. J. Yim,; L. Swiech,; H. R. Kempton,; J. E. Dahlman,; O. Parnas,; T. M. Eisenhaure,; M. Jovanovic, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159, 440-455.
[9]
L. Yi,; J. M. Li, CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim Biophys Acta Rev. Cancer 2016, 1866, 197-207.
[10]
Y. C. Pan,; J. J. Yang,; X. W. Luan,; X. L. Liu,; X. Q. Li,; J. Yang,; T. Huang,; L. Sun,; Y. Wang,; Y. Lin, Near-infrared upconversion- activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Sci. Adv. 2019, 5, eaav7199.
[11]
J. C. Nault,; S. Datta,; S. Imbeaud,; A. Franconi,; M. Mallet,; G. Couchy,; E. Letouzé,; C. Pilati,; B. Verret,; J. F. Blanc, Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 2015, 47, 1187-1193.
[12]
Z. Z. Zhang,; Q. X. Wang,; Q. Liu,; Y. D. Zheng,; C. X. Zheng,; K. K. Yi,; Y. Zhao,; Y. Gu,; Y. Wang,; C. Wang, et al. Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv. Mater. 2019, 31, e1905751.
[13]
G. J. Chen,; A. A. Abdeen,; Y. Y. Wang,; P. K. Shahi,; S. Robertson,; R. S. Xie,; M. Suzuki,; B. R. Pattnaik,; K. Saha,; S. Q. Gong, A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 2019, 14, 974-980.
[14]
P. Wang,; L. M. Zhang,; Y. Xie,; N. X. Wang,; R. B. Tang,; W. F. Zheng,; X. Y. Jiang, Genome editing for cancer therapy: Delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Adv. Sci. 2017, 4, 1700175.
[15]
L. Li,; L. J. Song,; X. W. Liu,; X. Yang,; X. Li,; T. He,; N. Wang,; S. Yang,; C. Yu,; T. Yin, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 2017, 11, 95-111.
[16]
Q. Liu,; K. Zhao,; C. Wang,; Z. Z. Zhang,; C. X. Zheng,; Y. Zhao,; Y. D. Zheng,; C. Y. Liu,; Y. L. An,; L. Q. Shi, et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 2019, 6, 1801423.
[17]
H. X. Wang,; Z. Y. Song,; Y. H. Lao,; X. Xu,; J. Gong,; D. Cheng,; S. Chakraborty,; J. S. Park,; M. Q. Li,; D. Huang, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl. Acad. Sci. USA 2018, 115, 4903-4908.
[18]
E. Viré,; C. Brenner,; R. Deplus,; L. Blanchon,; M. Fraga,; C. Didelot,; L. Morey,; A. Van Eynde,; D. Bernard,; J. M. Vanderwinden, et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439, 871-874.
[19]
A. Portela,; M. Esteller, Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057-1068.
[20]
T. K. Kelly,; D. D. De Carvalho,; P. A. Jones, Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 2010, 28, 1069-1078.
[21]
I. Comet,; E. M. Riising,; B. Leblanc,; K. Helin, Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer 2016, 16, 803-810.
[22]
A. Laugesen,; J. W. Højfeldt,; K. Helin, Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med. 2016, 6, a026575.
[23]
Y. T. Xiao, Enhancer of zeste homolog 2: A potential target for tumor therapy. Int. J. Biochem. Cell Biol. 2011, 43, 474-477.
[24]
H. Yamaguchi,; M. C. Hung, Regulation and role of EZH2 in cancer. Cancer Res. Treat. 2014, 46, 209-222.
[25]
S. Varambally,; S. M. Dhanasekaran,; M. Zhou,; T. R. Barrette,; C. Kumar-Sinha,; M. G. Sanda,; D. Ghosh,; K. J. Pienta,; R. G. B. Sewalt,; A. P. Otte, The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419, 624-629.
[26]
E. E. Gardner,; B. H. Lok,; V. E. Schneeberger,; P. Desmeules,; L. A. Miles,; P. K. Arnold,; A. Ni,; I. Khodos,; E. De Stanchina,; T. Nguyen, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 2017, 31, 286-299.
[27]
M. T. McCabe,; H. M. Ott,; G. Ganji,; S. Korenchuk,; C. Thompson,; G. S. Van Aller,; Y. Liu,; A. P. Graves,; A. D. P. Iii,; E. Diaz, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2- activating mutations. Nature 2012, 492, 108-112.
[28]
B. A. Chabner,; T. G. Roberts Jr, Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65-72.
[29]
Y. W. Cong,; H. H. Xiao,; H. J. Xiong,; Z. G. Wang,; J. X. Ding,; C. Li,; X. S. Chen,; X. J. Liang,; D. F. Zhou,; Y. B. Huang, Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 2018, 30, 1706220.
[30]
H. H. Xiao,; L. S. Yan,; E. M. Dempsey,; W. T. Song,; R. G. Qi,; W. L. Li,; Y. B. Huang,; X. B. Jing,; D. F. Zhou,; J. X. Ding, et al. Recent progress in polymer-based platinum drug delivery systems. Prog. Polym. Sci. 2018, 87, 70-106.
[31]
Y. J. Yu,; Q. Xu,; S. S. He,; H. J. Xiong,; Q. F. Zhang,; W. G. Xu,; V. Ricotta,; L. Bai,; Q. Zhang,; Z. Q. Yu, et al. Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev. 2019, 387, 154-179.
[32]
Y. X. Lin,; Y. Wang,; H. W. An,; B. W. Qi,; J. Q. Wang,; L. Wang,; J. J. Shi,; L. Mei,; H. Wang, Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett. 2019, 19, 2968-2978.
[33]
H. H. Xiao,; R. G. Qi,; T. Li,; S. G. Awuah,; Y. R. Zheng,; W. Wei,; X. Kang,; H. Q. Song,; Y. H. Wang,; Y. J. Yu, et al. Maximizing synergistic activity when combining RNAi and platinum-based anticancer agents. J. Am. Chem. Soc. 2017, 139, 3033-3044.
[34]
A. V. Nascimento,; A. Singh,; H. Bousbaa,; D. Ferreira,; B. Sarmento,; M. M. Amiji, Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater. 2017, 47, 71-80.
[35]
Z. G. Wang,; G. Z. Kuang,; Z. Q. Yu,; A. M. Li,; D. F. Zhou,; Y. B. Huang, Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 2019, 94, 459-468.
[36]
P. Wu,; X. F. Wang,; Z. G. Wang,; W. Ma,; J. S. Guo,; J. J. Chen,; Z. Q. Yu,; J. Z. Li,; D. F. Zhou, Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy. ACS Appl. Mater. Interfaces 2019, 11, 18691-18700.
[37]
D. F. Zhou,; J. S. Guo,; G. B. Kim,; J. Z. Li,; X. S. Chen,; J. Yang,; Y. B. Huang, Simultaneously photo-cleavable and activatable prodrug- backboned block copolymer micelles for precise anticancer drug delivery. Adv. Healthcare Mater. 2016, 5, 2493-2499.
[38]
S. S. He,; C. Li,; Q. F. Zhang,; J. X. Ding,; X. J. Liang,; X. S. Chen,; H. H. Xiao,; X. Y. Chen,; D. F. Zhou,; Y. B. Huang, Tailoring platinum(IV) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine. ACS Nano 2018, 12, 7272-7281.
[39]
Q. F. Zhang,; G. Z. Kuang,; S. S. He,; H. T. Lu,; Y. L. Cheng,; D. F. Zhou,; Y. B. Huang, Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett. 2020. 20, 3039-3049.
[40]
Z. X. Zhou,; X. R. Liu,; D. C. Zhu,; Y. Wang,; Z. Zhang,; X. F. Zhou,; N. S. Qiu,; X. S. Chen,; Y. Q. Shen, Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev. 2017, 115, 115-154.
[41]
H. J. Kim,; A. Kim,; K. Miyata,; K. Kataoka, Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliv. Rev. 2016, 104, 61-77.
[42]
P. Mali,; L. H. Yang,; K. M. Esvelt,; J. Aach,; M. Guell,; J. E. Dicarlo,; J. E. Norville,; G. M. Church, RNA-guided human genome engineering via cas9. Science 2013, 339, 823-826.
[43]
M. Jinek,; A. East,; A. Cheng,; S. Lin,; E. B. Ma,; J. A. Doudna, RNA-programmed genome editing in human cells. eLife 2013, 2, e00471.
[44]
P. H. Abbosh,; J. S. Montgomery,; J. A. Starkey,; M. Novotny,; E. G. Zuhowski,; M. J. Egorin,; A. P. Moseman,; A. Golas,; K. M. Brannon,; C. Balch, et al. Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells. Cancer Res. 2006, 66, 5582-5591.
[45]
K. A. Gelato,; W. Fischle, Role of histone modifications in defining chromatin structure and function. Biol. Chem. 2008, 389, 353-363.
[46]
R. Eskeland,; M. Leeb,; G. R. Grimes,; C. Kress,; S. Boyle,; D. Sproul,; N. Gilbert,; Y. H. Fan,; A. I. Skoultchi,; A. Wutz, et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 2010, 38, 452-464.
Nano Research
Pages 601-610
Cite this article:
Zhang Q, Kuang G, He S, et al. Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy. Nano Research, 2021, 14(3): 601-610. https://doi.org/10.1007/s12274-020-3066-4
Topics:

956

Views

33

Crossref

0

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 08 July 2020
Revised: 12 August 2020
Accepted: 22 August 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return