AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Adaptive ordering and filament polymerization of cell cytoskeleton by tunable nanoarrays

Jing DaiYuan Yao( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Show Author Information

Graphical Abstract

Abstract

Matrix adaptation reconstructs the architecture of cell, and has important implication in proper biological functioning. However, how the network of cytoskeleton filament undergoes reconstruction, reordering, and surface adaptation, requires a systematic investigation. Here, we show that surface sensing and adaptation occur correspondingly with related reorganization of cytoskeleton filaments (actin, tubulin, and vimentin). The microstructure of filament network is built by adaptive change of chemical polymerization on cytoskeleton filaments. The transition of cellular morphology, from spheroidal architecture on nanoarray to extending structure with stress fibers on flat surface, involves spatial reorganization and polymerization modulation of filaments. The dimension of filaments (diameter, orientation, and density) are changed accordingly to spatiotemporal distribution of cytoskeleton network. In addition, our findings elucidate how cell can tune their architecture at nanoscale by matrix adaptation, and provide a novel information on interplay between cytoskeleton and pathophysiology.

Electronic Supplementary Material

Download File(s)
12274_2020_3076_MOESM1_ESM.pdf (2.5 MB)

References

[1]
K. E. Kasza,; A. C. Rowat,; J. Y. Liu,; T. E. Angelini,; C. P. Brangwynne,; G. H. Koenderink,; D. A. Weitz, The cell as a material. Curr. Opin. Cell Biol. 2007, 19, 101-107.
[2]
A. F. Pegoraro,; P. Janmey,; D. A. Weitz, Mechanical properties of the cytoskeleton and cells. Cold Spring Harb. Perspect. Biol. 2017, 9, a022038.
[3]
S. Banerjee,; M. L. Gardel,; U. S. Schwarz, The actin cytoskeleton as an active adaptive material. Annu. Rev. Cond. Matter Phys. 2020, 11, 421-439.
[4]
Q. Wen,; P. A. Janmey, Effects of non-linearity on cell-ECM interactions. Exp. Cell Res. 2013, 319, 2481-2489.
[5]
J. L. Hu,; Y. W. Li,; Y. K. Hao,; T. Q. Zheng,; S. K. Gupta,; G. A. Parada,; H. Y. Wu,; S. T. Lin,; S. D. Wang,; X. H. Zhao, et al. High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments. Proc. Natl. Acad. Sci. USA 2019, 116, 17175-17180.
[6]
F. Burla,; Y. Mulla,; B. E. Vos,; A. Aufderhorst-Roberts,; G. H. Koenderink, From mechanical resilience to active material properties in biopolymer networks. Nat. Rev. Phys. 2019, 1, 249-263.
[7]
Y. L. Han,; A. F. Pegoraro,; H. Li,; K. F. Li,; Y. Yuan,; G. Q. Xu,; Z. C. Gu,; J. W. Sun,; Y. K. Hao,; S. K. Gupta, et al. Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nat. Phys. 2019, 16, 101-108.
[8]
M. Dogterom,; G. H. Koenderink, Actin-microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 2019, 20, 38-54.
[9]
Y. Bashirzadeh,; A. P. Liu, Encapsulation of the cytoskeleton: Towards mimicking the mechanics of a cell. Soft Matter 2019, 15, 8425-8436.
[10]
R. A. Campbell,; M. N. Dean, Adaptation and evolution of biological materials. Integr. Comp. Biol. 2019, 59, 1629-1635.
[11]
F. Burla,; J. Tauber,; S. Dussi,; J. van der Gucht,; G. H. Koenderink, Stress management in composite biopolymer networks. Nat. Phys. 2019, 15, 549-553.
[12]
C. De Pascalis,; C. Pérez-González,; S. Seetharaman,; B. Boëda,; B. Vianay,; M. Burute,; C. Leduc,; N. Borghi,; X. Trepat,; S. Etienne- Manneville, Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J. Cell Biol. 2018, 217, 3031-3044.
[13]
S. Koster,; D. A. Weitz,; R. D. Goldman,; U. Aebi,; H. Herrmann, Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 2015, 32, 82-91.
[14]
C. G. Lopez,; O. Saldanha,; A. Aufderhorst-Roberts,; C. Martinez- Torres,; M. Kuijs,; G. H. Koenderink,; S. Köster,; K. Huber, Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. Soft Matter 2018, 14, 8445-8454.
[15]
T. J. Kirby,; J. Lammerding, Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 2018, 20, 373-381.
[16]
E. Makhija,; D. S. Jokhun,; G. V. Shivashankar, Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc. Natl. Acad. Sci. USA 2016, 113, E32-E40.
[17]
M. Yu,; S. M. Le,; Y. C. Ammon,; B. T. Goult,; A. Akhmanova,; J. Yan, Force-dependent regulation of talin-KANK1 complex at focal adhesions. Nano Lett. 2019, 19, 5982-5990.
[18]
H. Le Ferrand,; A. R. Studart,; A. F. Arrieta, Filtered mechanosensing using snapping composites with embedded mechano-electrical transduction. ACS Nano 2019, 13, 4752-4760.
[19]
A. W. Holle,; N. Govindan Kutty Devi,; K. Clar,; A. Fan,; T. Saif,; R. Kemkemer,; J. P. Spatz, Cancer cells invade confined microchannels via a self-directed mesenchymal-to-amoeboid transition. Nano Lett. 2019, 19, 2280-2290.
[20]
S. Landau,; A. Moriel,; A. Livne,; M. H. Zheng,; E. Bouchbinder,; S. Levenberg, Tissue-level mechanosensitivity: Predicting and controlling the orientation of 3D vascular networks. Nano Lett. 2018, 18, 7698-7708.
[21]
A. W. Holle,; J. L. Young,; K. J. Van Vliet,; R. D. Kamm,; D. Discher,; P. Janmey,; J. P. Spatz,; T. Saif, Cell-extracellular matrix mechanobiology: Forceful tools and emerging needs for basic and translational research. Nano Lett. 2018, 18, 1-8.
[22]
M. Saxena,; R. Changede,; J. Hone,; H. Wolfenson,; M. P. Sheetz, Force-induced calpain cleavage of talin is critical for growth, adhesion development, and rigidity sensing. Nano Lett. 2017, 17, 7242-7251.
[23]
B. R. Sarangi,; M. Gupta,; B. L. Doss,; N. Tissot,; F. Lam,; R. M. Mège,; N. Borghi,; B. Ladoux, Coordination between intra- and extracellular forces regulates focal adhesion dynamics. Nano Lett. 2017, 17, 399-406.
[24]
B. Yang,; Z. Z. Lieu,; H. Wolfenson,; F. M. Hameed,; A. D. Bershadsky,; M. P. Sheetz, Mechanosensing controlled directly by tyrosine kinases. Nano Lett. 2016, 16, 5951-5961.
[25]
J. N. Roberts,; J. K. Sahoo,; L. E. McNamara,; K. V. Burgess,; J. L. Yang,; E. V. Alakpa,; H. J. Anderson,; J. Hay,; L. A. Turner,; S. J. Yarwood, et al. Dynamic surfaces for the study of mesenchymal stem cell growth through adhesion regulation. ACS Nano 2016, 10, 6667-6679.
[26]
J. Q. Hu,; A. A. Gondarenko,; A. P. Dang,; K. T. Bashour,; R. S. O’Connor,; S. Lee,; A. Liapis,; S. Ghassemi,; M. C. Milone,; M. P. Sheetz, et al. High-throughput mechanobiology screening platform using micro- and nanotopography. Nano Lett. 2016, 16, 2198-2204.
[27]
H. van Hoorn,; R. Harkes,; E. M. Spiesz,; C. Storm,; D. van Noort,; B. Ladoux,; T. Schmidt, The nanoscale architecture of force-bearing focal adhesions. Nano Lett. 2014, 14, 4257-4262.
[28]
E. Desvignes,; A. Bouissou,; A. Laborde,; T. Mangeat,; A. Proag,; C. Vieu,; C. Thibault,; I. Maridonneau-Parini,; R. Poincloux, Nanoscale forces during confined cell migration. Nano Lett. 2018, 18, 6326-6333.
[29]
C. M. Horejs,; J. P. St-Pierre,; J. R. M. Ojala,; J. A. M. Steele,; P. B. da Silva,; A. Rynne-Vidal,; S. A. Maynard,; C. S. Hansel,; C. Rodríguez-Fernández,; M. M. Mazo, et al. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information. Nat. Commun. 2017, 8, 15509.
[30]
V. Hosseini,; O. Evrova,; S. P. Hoerstrup,; V. Vogel, A simple modification method to obtain anisotropic and porous 3D microfibrillar scaffolds for surgical and biomedical applications. Small 2018, 14, 1702650.
[31]
X. Wang,; S. Y. Li,; C. Yan,; P. Liu,; J. D. Ding, Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015, 15, 1457-1467.
[32]
X. Yao,; R. Peng,; J. D. Ding, Cell-material interactions revealed via material techniques of surface patterning. Adv. Mater. 2013, 25, 5257-5286.
[33]
Y. M. Peng,; Q. J. Liu,; T. L. He,; K. Ye,; X. Yao,; J. D. Ding, Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Biomaterials 2018, 178, 467-480.
[34]
K. Ye,; X. Wang,; L. P. Cao,; S. Y. Li,; Z. H. Li,; L. Yu,; J. D. Ding, Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett. 2015, 15, 4720-4729.
[35]
Y. Q. Wang,; J. K. Gong,; Y. Yao, Extracellular nanofiber-orchestrated cytoskeletal reorganization and mediated directional migration of cancer cells. Nanoscale 2020, 12, 3183-3193.
[36]
J. Dai,; J. K. Gong,; N. Kong,; Y. Yao, Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale 2020, 12, 12395-12404.
[37]
W. Q. Chen,; L. G. Villa-Diaz,; Y. B. Sun,; S. N. Weng,; J. K. Kim,; R. H. W. Lam,; L. Han,; R. Fan,; P. H. Krebsbach,; J. P. Fu, Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 2012, 6, 4094-4103.
[38]
K. Abdul,; W. A. El-Said,; T. H. Kim,; J. W. Choi, Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials 2012, 33, 731-739.
[39]
A. S. Andersson,; F. Bäckhed,; A. von Euler,; A. Richter-Dahlfors,; D. Sutherland,; B. Kasemo, Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 2003, 24, 3427-3436.
[40]
Q. L. Ma,; N. Jiang,; S. Liang,; F. L. Chen,; L. Fang,; X. Wang,; J. J. Wang,; L. H. Chen, Functionalization of a clustered TiO2 nanotubular surface with platelet derived growth factor-BB covalent modification enhances osteogenic differentiation of bone marrow mesenchymal stem cells. Biomaterials 2020, 230, 119650.
[41]
D. Bae,; S. H. Moon,; B. G. Park,; S. J. Park,; T. Jung,; J. S. Kim,; K. B. Lee,; H. M. Chung, Nanotopographical control for maintaining undifferentiated human embryonic stem cell colonies in feeder free conditions. Biomaterials 2014, 35, 916-928.
[42]
J. Fiedler,; B. Özdemir,; J. Bartholomä,; A. Plettl,; R. E. Brenner,; P. Ziemann, The effect of substrate surface nanotopography on the behavior of multipotnent mesenchymal stromal cells and osteoblasts. Biomaterials 2013, 34, 8851-8859.
[43]
M. Dipalo,; A. F. McGuire,; H. Y. Lou,; V. Caprettini,; G. Melle,; G. Bruno,; C. Lubrano,; L. Matino,; X. Li,; F. De Angelis, et al. Cells adhering to 3d vertical nanostructures: Cell membrane reshaping without stable internalization. Nano Lett. 2018, 18, 6100-6105.
[44]
K. J. Chalut,; K. Kulangara,; M. G. Giacomelli,; A. Wax,; K. W. Leong, Deformation of stem cell nuclei by nanotopographical cues. Soft Matter 2010, 6, 1675-1681.
[45]
P. M. Davidson,; J. Sliz,; P. Isermann,; C. Denais,; J. Lammerding, Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. 2015, 7, 1534-1546.
[46]
F. Badique,; D. R. Stamov,; P. M. Davidson,; M. Veuillet,; G. Reiter,; J. N. Freund,; C. M. Franz,; K. Anselme, Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials 2013, 34, 2991-3001.
[47]
A. S. Nathan,; B. M. Baker,; N. L. Nerurkar,; R. L. Mauck, Mechano- topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 2011, 7, 57-66.
[48]
K. Wang,; A. Bruce,; R. Mezan,; A. Kadiyala,; L. Y. Wang,; J. Dawson,; Y. Rojanasakul,; Y. Yang, Nanotopographical modulation of cell function through nuclear deformation. ACS Appl. Mater. Interfaces 2016, 8, 5082-5092.
[49]
M. Versaevel,; T. Grevesse,; S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 2012, 3, 671.
[50]
M. Werner,; S. B. G. Blanquer,; S. P. Haimi,; G. Korus,; J. W. C. Dunlop,; G. N. Duda,; D. W. Grijpma,; A. Petersen, Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 2017, 4, 1600347.
[51]
C. S. Hansel,; M. N. Holme,; S. Gopal,; M. M. Stevens, Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020, 226, 119406.
[52]
N. Costigliola,; L. Y. Ding,; C. J. Burckhardt,; S. J. Han,; E. Gutierrez,; A. Mota,; A. Groisman,; T. J. Mitchison,; G. Danuser, Vimentin fibers orient traction stress. Proc. Natl. Acad. Sci. USA 2017, 114, 5195-5200.
[53]
Z. Gan,; L. Y. Ding,; C. J. Burckhardt,; J. Lowery,; A. Zaritsky,; K. Sitterley,; A. Mota,; N. Costigliola,; C. G. Starker,; D. F. Voytas, et al. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell Syst. 2016, 3, 500-501.
[54]
Y. Lu,; J. Dai,; N. Kong,; J. H. Liu,; J. K. Gong,; Y. Yao, Internalization characterization of si nanorod with camouflaged cell membrane proteins reveals ATXN2 as a negative regulator. Cells 2019, 8, 931.
[55]
Z. P. Huang,; H. Fang,; J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744-748.
[56]
K. L. McKinley,; N. Stuurman,; L. A. Royer,; C. Schartner,; D. Castillo-Azofeifa,; M. Delling,; O. D. Klein,; R. D. Vale, Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 2018, 7, e36739.
[57]
M. T. Yang,; N. J. Sniadecki,; C. S. Chen, Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 2007, 19, 3119-3123.
[58]
J. P. Fu,; Y. K. Wang,; M. T. Yang,; R. A. Desai,; X. Yu,; Z. J. Liu,; C. S. Chen, Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 2010, 7, 733-736.
[59]
N. Q. Balaban,; U. S. Schwarz,; D. Riveline,; P. Goichberg,; G. Tzur,; I. Sabanay,; D. Mahalu,; S. Safran,; A. Bershadsky,; L. Addadi et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 2001, 3, 466-472.
[60]
T. Iskratsch,; H. Wolfenson,; M. P. Sheetz, Appreciating force and shape - the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 2014, 15, 825-833.
[61]
P. Roca-Cusachs,; V. Conte,; X. Trepat, Quantifying forces in cell biology. Nat. Cell Biol. 2017, 19, 742-751.
[62]
O. du Roure,; A. Saez,; A. Buguin,; R. H. Austin,; P. Chavrier,; P. Siberzan,; B. Ladoux, Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA 2005, 102, 2390-2395.
[63]
M. Gupta,; B. R. Sarangi,; J. Deschamps,; Y. Nematbakhsh,; A. Callan- Jones,; F. Margadant,; R. M. Mège,; C. T. Lim,; R. Voituriez,; B. Ladoux, Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 2015, 6, 7525.
[64]
S. Ghassemi,; G. Meacci,; S. M. Liu,; A. A. Gondarenko,; A. Mathur,; P. Roca-Cusachs,; M. P. Sheetz,; J. Hone, Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl. Acad. Sci. USA 2012, 109, 5328-5333.
[65]
H. Wolfenson,; G. Meacci,; S. M. Liu,; M. R. Stachowiak,; T. Iskratsch,; S. Ghassemi,; P. Roca-Cusachs,; B. O'Shaughnessy,; J. Hone,; M. P. Sheetz, Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 2016, 18, 33-42.
[66]
J. L. Tan,; J. Tien,; D. M. Pirone,; D. S. Gray,; K. Bhadriraju,; C. S. Chen, Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 2003, 100, 1484-1489.
[67]
S. W. Moore,; N. Biais,; M. P. Sheetz, Traction on immobilized netrin-1 is sufficient to reorient axons. Science 2009, 325, 166.
[68]
N. Biais,; D. Higashi,; M. So,; B. Ladoux, Techniques to measure pilus retraction forces. Methods Mol. Biol. 2012, 799, 197-216.
[69]
M. A. Hopcroft,; W. D. Nix,; T. W. Kenny, What is the young's modulus of silicon? J. Microelectromech. Syst. 2010, 19, 229-238.
[70]
C. C. DuFort,; M. J. Paszek,; V. M. Weaver, Balancing forces: Architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 2011, 12, 308-319.
[71]
A. C. Shieh, Biomechanical forces shape the tumor microenvironment. Ann. Biomed. Eng. 2011, 39, 1379-1389.
[72]
S. Suresh, Biomechanics and biophysics of cancer cells. Acta Mater. 2007, 55, 3989-4014.
[73]
K. Kessenbrock,; V. Plaks,; Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52-67.
[74]
S. Kaur,; S. Kumar,; N. Momi,; A. R. Sasson,; S. K. Batra, Mucins in pancreatic cancer and its microenvironment. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 607-620.
[75]
S. E. Cross,; Y. S. Jin,; J. Y. Rao,; J. K. Gimzewski, Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2, 780-783.
[76]
D. Wirtz,; K. Konstantopoulos,; P. C. Searson, The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 2011, 11, 512-522.
[77]
C. Sheridan, Pancreatic cancer provides testbed for first mechanotherapeutics. Nat. Biotechnol. 2019, 37, 829-831.
[78]
N. Waddell,; M. Pajic,; A. M. Patch,; D. K. Chang,; K. S. Kassahn,; P. Bailey,; A. L. Johns,; D. Miller,; K. Nones,; K. Quek, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495-501.
[79]
A. K. Witkiewicz,; E. A. McMillan,; U. Balaji,; G. H. Baek,; W. C. Lin,; J. Mansour,; M. Mollaee,; K. U. Wagner,; P. Koduru,; A. Yopp, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015, 6, 6744.
[80]
B. M. Chung,; J. D. Rotty,; P. A. Coulombe, Networking galore: Intermediate filaments and cell migration. Curr. Opin. Cell Biol. 2013, 25, 600-612.
[81]
H. Katsuno,; M. Toriyama,; Y. Hosokawa,; K. Mizuno,; K. Ikeda,; Y. Sakumura,; N. Inagaki, Actin migration driven by directional assembly and disassembly of membrane-anchored actin filaments. Cell Rep. 2015, 12, 648-660.
[82]
O. Tezcan,; U. Gündüz, Vimentin silencing effect on invasive and migration characteristics of doxorubicin resistant MCF-7 cells. Biomed. Pharmacother. 2014, 68, 357-364.
[83]
J. D. Mih,; A. Marinkovic,; F. Liu,; A. S. Sharif,; D. J. Tschumperlin, Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J. Cell Sci. 2012, 125, 5974-5983.
[84]
T. A. Ulrich,; E. M. de Juan Pardo,; S. Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 2009, 69, 4167-4174.
[85]
S. Mahbouli,; J. Talvas,; A. der Vartanian,; S. Ortega,; S. Rougé,; M. P. Vasson,; A. Rossary, Activation of antioxidant defences of human mammary epithelial cells under leptin depend on neoplastic state. BMC Cancer 2018, 18, 1264.
[86]
G. Marelli,; M. Erreni,; A. Anselmo,; V. Taverniti,; S. Guglielmetti,; A. Mantovani,; P. Allavena, Heme-oxygenase-1 production by intestinal CX3CR1+ macrophages helps to resolve inflammation and prevents carcinogenesis. Cancer Res. 2017, 77, 4472-4485.
[87]
X. F. Zhu,; S. C. Huang,; L. L. Zeng,; J. Y. Ma,; S. H. Sun,; F. Zeng,; F. L. Kong,; X. M. Cheng, HMOX-1 inhibits TGF-β-induced epithelial- mesenchymal transition in the MCF-7 breast cancer cell line. Int. J. Mol. Med. 2017, 40, 411-417.
[88]
L. Zhang,; Y. Y. Guo,; H. Y. Wang,; L. L. Zhao,; Z. L. Ma,; T. Li,; J. Liu,; M. Sun,; Y. T. Jian,; L. Yao, et al. Edaravone reduces Aβ-induced oxidative damage in SH-SY5Y cells by activating the NrF2/ARE signaling pathway. Life Sci. 2019, 221, 259-266.
[89]
M. I. Khan,; K. J. Debski,; M. Dabrowski,; A. M. Czarnecka,; C. Szczylik, Gene set enrichment analysis and ingenuity pathway analysis of metastatic clear cell renal cell carcinoma cell line. Am. J. Physiol. Renal Physiol. 2016, 311, F424-F436.
[90]
X. Guo,; Y. Hao,; M. Kamilijiang,; A. Hasimu,; J. L. Yuan,; G. Z. Wu,; H. Reyimu,; N. Kadeer,; A. Abudula, Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and ingenuity pathway analysis. Tumor Biol. 2015, 36, 1711-1720.
[91]
A. Krämer,; J. Green,; J. Pollard, Jr.; S. Tugendreich, Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014, 30, 523-530.
[92]
H. T. Lv,; L. Liu,; Y. Z. Zhang,; T. Song,; J. Lu,; X. Chen, Ingenuity pathways analysis of urine metabonomics phenotypes toxicity of gentamicin in multiple organs. Mol. BioSyst. 2010, 6, 2056-2067.
[93]
Á. Jiménez-Marín,; M. Collado-Romero,; M. Ramirez-Boo,; C. Arce,; J. J. Garrido, Biological pathway analysis by arrayunlock and ingenuity pathway analysis. BMC Proc. 2009, 3 Suppl 4, S6.
Nano Research
Pages 620-627
Cite this article:
Dai J, Yao Y. Adaptive ordering and filament polymerization of cell cytoskeleton by tunable nanoarrays. Nano Research, 2021, 14(3): 620-627. https://doi.org/10.1007/s12274-020-3076-2
Topics:

882

Views

4

Crossref

0

Web of Science

4

Scopus

2

CSCD

Altmetrics

Received: 10 June 2020
Revised: 28 July 2020
Accepted: 26 August 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return