AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis

Yingchao Yang1Qian Liu1Tianyi Zhao1( )Yunfei Ru1Ruochen Fang1,2Yichao Xu1,2Jin Huang1Mingjie Liu1,2,3,4( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
Research Institute of Frontier Science, Beihang University, Beijing 100191, China
International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Abstract

Synthetic materials with tunable mechanical properties have great potential in soft robotics and biomedical engineering. However, current materials are limited to the mechanical duality altering their mechanical properties only between soft and hard states and lack of consecutively programmable mechanics. Herein, the magnetic-programmable organohydrogels with heterogeneous dynamic architecture are designed by encasing oleophilic ferrofluid droplets into hydrogel matrix. As magnetic field increases, the mechanical properties of organohydrogels can be consecutively modulated owing to the gradual formation of chain-like assembly structures of nanoparticles. The storage modulus G′ increases by 2.5 times when magnetic field goes up to 0.35 T. Small-Angle X-ray Scattering (SAXS) confirms the reconfigurable orientation of nanoparticles and the organohydrogels show reversible modulus switching. Besides, the materials also exhibit high stretchability, magnetic actuation behavior and effective self-healing capability. Furthermore, the organohydrogels are applied into the design of effectors with mechanical adaptivity. When subjected to serious external perturbations, the effector can maintain mechanical homeostasis by regulating modulus of organohydrogel under applied magnetic field. Such materials are applicable to homeostatic systems with mechanically adaptive behaviors and programmed responses to external force stimuli.

Electronic Supplementary Material

Download File(s)
12274_2020_3079_MOESM1_ESM.pdf (1.4 MB)

References

[1]
P. Egan,; R. Sinko,; P. R. LeDuc,; S. Keten, The role of mechanics in biological and bio-inspired systems. Nat. Commun. 2015, 6, 7418.
[2]
J. Y. Mo,; S. F. Prévost,; L. M. Blowes; M. Egertová,; N. J. Terrill,; W. Wang,; M. R. Elphick,; H. S. Gupta, Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. Proc. Natl. Acad. Sci. USA 2016, 113, E6362-E6371.
[3]
X. Wu,; W. M. Huang,; W. H. Wu,; B. Xue,; D. F. Xiang,; Y. Li,; M. Qin,; F. Sun,; W. Wang,; W. B. Zhang, et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018, 11, 5556-5565.
[4]
A. Balasubramanian,; M. Standish,; C. J. Bettinger, Microfluidic thermally activated materials for rapid control of macroscopic compliance. Adv. Funct. Mater. 2014, 24, 4860-4866.
[5]
L. Tang,; L. Wang,; X. Yang,; Y. Y. Feng,; Y. Li,; W. Feng, Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702.
[6]
Z. X. Zhang,; L. Wang,; H. T. Yu,; F. Zhang,; L. Tang,; Y. Y. Feng,; W. Feng, Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl. Mater. Interfaces 2020, 12, 15657-15666.
[7]
T. J. White,; D. J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087-1098.
[8]
F. Lancia,; A. Ryabchun,; A. D. Nguindjel,; S. Kwangmettatam,; N. Katsonis, Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 2019, 10, 4819.
[9]
X. Zhou,; C. Li,; Y. Shao,; C. Chen,; Z. Q. Yang,; D. S. Liu, Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem. Commun. 2016, 52, 10668-10671.
[10]
F. Yang,; A. Cholewinski,; L. Yu,; G. Rivers,; B. X. Zhao, A hybrid material that reversibly switches between two stable solid states. Nat. Mater. 2019, 18, 874-882.
[11]
Z. G. Zhao,; Y. X. Liu,; K. J. Zhang,; S. Y. Zhuo,; R. C. Fang,; J. Q. Zhang,; L. Jiang,; M. J. Liu, Biphasic synergistic gel materials with switchable mechanics and self-healing capacity. Angew. Chem., Int. Ed. 2017, 56, 13464-13469.
[12]
I. M. Van Meerbeek,; B. C. Mac Murray,; J. W. Kim,; S. S. Robinson,; P. X. Zou,; M. N. Silberstein,; R. F. Shepherd, Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines. Adv. Mater. 2016, 28, 2801-2806.
[13]
H. R. Vutukuri,; A. F. Demirörs,; B. Peng,; P. D. J. van Oostrum,; A. Imhof,; A. van Blaaderen, Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew. Chem., Int. Ed. 2012, 51, 11249-11253.
[14]
C. Majidi,; R. J. Wood, Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl. Phys. Lett. 2010, 97, 164104.
[15]
P. Testa,; R. W. Style,; J. Z. Cui,; C. Donnelly,; E. Borisova,; P. M. Derlet,; E. R. Dufresne,; L. J. Heyderman, Magnetically addressable shape-memory and stiffening in a composite elastomer. Adv. Mater. 2019, 31, 1900561.
[16]
W. D. Wang,; J. V. I. Timonen,; A. Carlson; D. M. Drotlef,; C. T. Zhang,; S. Kolle,; A. Grinthal,; T. S. Wong,; B. Hatton,; S. H. Kang, et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77-82.
[17]
M. J. Liu,; Y. Ishida,; Y. Ebina,; T. Sasaki,; T. Hikima,; M. Takata,; T. Aida, An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68-72.
[18]
G. Z. Lum,; Z. Ye,; X. G. Dong,; H. Marvi,; O. Erin,; W. Q. Hu,; M. Sitti, Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007-E6015.
[19]
W. W. Lei,; G. L. Hou,; M. J. Liu,; Q. F. Rong,; Y. C. Xu,; Y. Tian,; L. Jiang, High-speed transport of liquid droplets in magnetic tubular microactuators. Sci. Adv. 2018, 4, eaau8767.
[20]
G. Y. Jiang,; S. Q. Song,; Y. H. Zhai,; C. Feng,; Y. Zhang, Improving the filler dispersion of polychloroprene/carboxylated multi-walled carbon nanotubes composites by non-covalent functionalization of carboxylated ionic liquid. Compos. Sci. Technol. 2016, 123, 171-178.
[21]
K. Butter,; P. H. H. Bomans,; P. M. Frederik,; G. J. Vroege,; A. P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2003, 2, 88-91.
[22]
I. Torres-Díaz,; C. Rinaldi, Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 2014, 10, 8584-8602.
[23]
K. Liu,; A. Mokhtare,; X. Z. Xue,; E. P. Furlani, Theoretical study of the photothermal behaviour of self-assembled magnetic-plasmonic chain structures. Phys. Chem. Chem. Phys. 2017, 19, 31613-31620.
[24]
N. N. Ni,; Y. F. Wen,; D. L. He,; X. S. Yi,; Z. J. Zhao,; Y. H. Xu, Synchronous improvement of loss factors and storage modulus of structural damping composite with functionalized polyamide nonwoven fabrics. Mater. Des. 2016, 94, 377-383.
[25]
B. J. Park,; F. F. Fang,; H. J. Choi, Magnetorheology: Materials and application. Soft Matter 2010, 6, 5246-5253.
[26]
R. J. G. Johnson,; K. M. Haas,; B. J. Lear, Fe3O4 nanoparticles as robust photothermal agents for driving high barrier reactions under ambient conditions. Chem. Commun. 2015, 51, 417-420.
[27]
S. Feng,; X. Q. Xiong,; G. L. Zhang,; N. Xia,; Y. M. Chen,; W. Wang, Hierarchical structure in oriented fibers of a dendronized polymer. Macromolecules 2009, 42, 281-287.
[28]
B. Andò,; S. Baglio,; A. Beninato, Behavior analysis of ferrofluidic gyroscope performances. Sens. Actuators, A: Phys. 2010, 162, 348-354.
[29]
T. Miyazaki,; Z. Zhao,; Y. Ichihara,; D. Yoshino,; T. Imamura,; K. Sawada,; S. Hayano,; H. Kamioka,; S. Mori,; H. Hirata, et al. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF-ĸB activity. Sci. Adv. 2019, 5, eaau7802.
[30]
S. N. Weng,; Y. Shao,; W. Q. Chen,; J. P. Fu, Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nat. Mater. 2016, 15, 961-967.
Nano Research
Pages 255-259
Cite this article:
Yang Y, Liu Q, Zhao T, et al. Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis. Nano Research, 2021, 14(1): 255-259. https://doi.org/10.1007/s12274-020-3079-z
Topics:

779

Views

8

Crossref

0

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 29 June 2020
Revised: 01 August 2020
Accepted: 27 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return