AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible synthesis of high-purity plasmonic assemblies

Laurent LermusiauxAnum NisarAlison M. Funston( )
ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, VIC 3800, Australia

Present address: Université de Bordeaux, CNRS, ICMCB, UMR 5026, Pessac 33600, France

Show Author Information

Graphical Abstract

Abstract

The self-assembly of nanoparticles has attracted a vast amount of attention due to the ability of the nanostructure to control light at the sub-wavelength scale, along with consequent strong electromagnetic field enhancement. However, most approaches developed for the formation of discrete assemblies are limited to a single and homogeneous system, and incorporation of larger or asymmetrical nanoparticles into assemblies with high purity remains a key challenge. Here, a simple and versatile approach to assemble nanoparticles of different sizes, shapes, and materials into various discrete homo- or hetero-structures using only two complementary deoxyribonucleic acid (DNA) strands is presented. First, surface functionalisation using DNA and alkyl-polyethylene glycol (PEG) enables transformation of as-synthesised nanoparticles into readily usable plasmonic building blocks for self-assembly. Optimisation of the DNA coverage enables the production of different assembly types, such as homo- and hetero-dimers, trimers and tetramers and core-satellite structures, which are produced in high purity using electrophoresis purification. The approach is extended from purely plasmonic structures to incorporate (luminescent) semiconductor nanoparticles for formation of hybrid assemblies. The deposited assemblies form a high yield of specific geometrical arrangements, attributed to the van der Waals attraction between particles. This method will enable the development of new complex colloidal nanoassemblies for biological and optical applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3084_MOESM1_ESM.pdf (7.4 MB)

References

[1]
S. J. Tan,; M. J. Campolongo,; D. Luo,; W. L. Cheng, Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268-276.
[2]
X. Bouju,; É. Duguet,; F. Gauffre,; C. R. Henry,; M. L. Kahn,; P. Mélinon,; S. Ravaine, Nonisotropic self-assembly of nanoparticles: From compact packing to functional aggregates. Adv. Mater. 2018, 30, 1706558.
[3]
S. Wintzheimer,; T. Granath,; M. Oppmann,; T. Kister,; T. Thai,; T. Kraus,; N. Vogel,; K. Mandel, Supraparticles: Functionality from uniform structural motifs. ACS Nano 2018, 12, 5093-5120.
[4]
K. Thorkelsson,; P. Bai,; T. Xu, Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10, 48-66.
[5]
J. Langer,; D. J. de Aberasturi,; J. Aizpurua,; R. A. Alvarez-Puebla,; B. Auguié,; J. J. Baumberg,; G. C. Bazan,; S. E. J. Bell,; A. Boisen,; A. G. Brolo, et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28-117.
[6]
S. Bidault,; A. Devilez,; V. Maillard,; L. Lermusiaux,; J. M. Guigner,; N. Bonod,; J. Wenger, Picosecond lifetimes with high quantum yields from single-photon-emitting colloidal nanostructures at room temperature. ACS Nano 2016, 10, 4806-4815.
[7]
M. E. Kyriazi,; D. Giust,; A. H. El-Sagheer,; P. M. Lackie,; O. L. Muskens,; T. Brown,; A. G. Kanaras, Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano 2018, 12, 3333-3340.
[8]
V. Raeesi,; L. Y. T. Chou,; W. C. W. Chan, Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures. Adv. Mater. 2016, 28, 8511-8518.
[9]
X. J. Cheng,; R. Sun,; L. Yin,; Z. F. Chai,; H. B. Shi,; M. Y. Gao, Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.
[10]
J. M. Romo-Herrera,; R. A. Alvarez-Puebla,; L. M. Liz-Marzán, Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011, 3, 1304-1315.
[11]
Y. G. Zhang,; F. Lu,; K. G. Yager,; D. van der Lelie,; O. Gang, A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 2013, 8, 865-872.
[12]
M. M. Maye,; M. T. Kumara,; D. Nykypanchuk,; W. B. Sherman,; O. Gang, Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 2010, 5, 116-120.
[13]
J. A. Fan,; Y. He,; K. Bao,; C. Wu,; J. M. Bao,; N. B. Schade,; V. N. Manoharan,; G. Shvets,; P. Nordlander,; D. R. Liu, et al. DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett. 2011, 11, 4859-4864.
[14]
A. Kuzyk,; R. Schreiber,; Z. Y. Fan,; G. Pardatscher,; E. M. Roller,; A. Högele,; F. C. Simmel,; A. O. Govorov,; T. Liedl, DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311-314.
[15]
L. S. Slaughter,; B. A. Willingham,; W. S. Chang,; M. H. Chester,; N. Ogden,; S. Link, Toward plasmonic polymers. Nano Lett. 2012, 12, 3967-3972.
[16]
S. J. Barrow,; A. M. Funston,; X. Z. Wei,; P. Mulvaney, DNA- directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 2013, 8, 138-167.
[17]
L. Lermusiaux,; V. Maillard,; S. Bidault, Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers. ACS Nano 2015, 9, 978-990.
[18]
M. J. Urban,; P. K. Dutta,; P. F. Wang,; X. Y. Duan,; X. B. Shen,; B. Q. Ding,; Y. G. Ke,; N. Liu, Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 2016, 138, 5495-5498.
[19]
L. Lermusiaux,; A. M. Funston, Plasmonic isomers via DNA-based self-assembly of gold nanoparticles. Nanoscale 2018, 10, 19557-19567.
[20]
S. Lerch,; B. M. Reinhard, Effect of interstitial palladium on plasmon- driven charge transfer in nanoparticle dimers. Nat. Commun. 2018, 9, 1608.
[21]
A. D. Mayevsky,; A. M. Funston, Control of electric field localization by three-dimensional bowtie nanoantennae. J. Phys. Chem. C 2018, 122, 18012-18020.
[22]
X. L. Liu,; S. Liang,; F. Nan,; Z. J. Yang,; X. F. Yu,; L. Zhou,; Z. H. Hao,; Q. Q. Wang, Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale 2013, 5, 5368-5374.
[23]
E. W. Malachosky,; P. Guyot-Sionnest, Gold bipyramid nanoparticle dimers. J. Phys. Chem. C 2014, 118, 6405-6412.
[24]
N. Zohar,; G. Haran, Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles. Langmuir 2014, 30, 7919-7927.
[25]
Y. Zhao,; M. Z. Sun,; W. Ma,; H. Kuang,; C. L. Xu, Biological molecules-governed plasmonic nanoparticle dimers with tailored optical behaviors. J. Phys. Chem. Lett. 2017, 8, 5633-5642.
[26]
J. A. Lloyd,; S. H. Ng,; A. C. Y. Liu,; Y. Zhu,; W. Chao,; T. Coenen,; J. Etheridge,; D. E. Gómez,; U. Bach, Plasmonic nanolenses: Electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli. ACS Nano 2017, 11, 1604-1612.
[27]
T. A. Gschneidtner,; Y. A. D. Fernandez,; S. Syrenova,; F. Westerlund,; C. Langhammer,; K. Moth-Poulsen, A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 2014, 30, 3041-3050.
[28]
Z. Y. Fan,; M. Tebbe,; A. Fery,; S. Agarwal,; A. Greiner, Assembly of gold nanoparticles on gold nanorods using functionalized poly(N-isopropylacrylamide) as polymeric “glue”. Part. Part. Syst. Charact. 2016, 33, 698-702.
[29]
S. B. Ni,; H. Wolf,; L. Isa, Programmable assembly of hybrid nanoclusters. Langmuir 2018, 34, 2481-2488.
[30]
L. Weller,; V. V. Thacker,; L. O. Herrmann,; E. A. Hemmig,; A. Lombardi,; U. F. Keyser,; J. J. Baumberg, Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly. ACS Photonics 2016, 3, 1589-1595.
[31]
C. Q. Shen,; X. Lan,; C. G. Zhu,; W. Zhang,; L. Y. Wang,; Q. B. Wang, Spiral patterning of Au nanoparticles on Au nanorod surface to form chiral AuNR@AuNP helical superstructures templated by DNA origami. Adv. Mater. 2017, 29, 1606533.
[32]
C. Zhang,; H. Q. Zhao,; L. N. Zhou,; A. E. Schlather,; L. L. Dong,; M. J. McClain,; D. F. Swearer,; P. Nordlander,; N. J. Halas, Al-Pd nanodisk heterodimers as antenna-reactor photocatalysts. Nano Lett. 2016, 16, 6677-6682.
[33]
S. Biswas,; J. S. Duan,; D. Nepal,; K. Park,; R. Pachter,; R. A. Vaia, Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett. 2013, 13, 6287-6291.
[34]
J. A. Lloyd,; S. H. Ng,; T. J. Davis,; D. E. Gómez,; U. Bach, Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C 2017, 121, 2437-2443.
[35]
M. R. Dewi,; T. A. Gschneidtner,; S. Elmas,; M. Ranford,; K. Moth- Poulsen,; T. Nann, Monofunctionalization and dimerization of nanoparticles using coordination chemistry. ACS Nano 2015, 9, 1434-1439.
[36]
M. Liu,; L. L. Fang,; Y. L. Li,; M. Gong,; A. Xu,; Z. X. Deng, “Flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: Toward effective plasmonic tuning of solution-assembled nanomaterials. Chem. Sci. 2016, 7, 5435-5440.
[37]
J. Kumar,; X. Z. Wei,; S. Barrow,; A. M. M. Funston,; K. George Thomas,; P. Mulvaney, Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Phys. Chem. Chem. Phys. 2013, 15, 4258-4264.
[38]
S. Borsley,; S. Flook,; E. R. Kay, Rapid and simple preparation of remarkably stable binary nanoparticle planet-satellite assemblies. Chem. Commun. 2015, 51, 7812-7815.
[39]
H. Y. Zhang,; J. Cadusch,; C. Kinnear,; T. James,; A. Roberts,; P. Mulvaney, Direct assembly of large area nanoparticle arrays. ACS Nano 2018, 12, 7529-7537.
[40]
R. P. M. Höller,; M. Dulle,; S. Thomä,; M. Mayer,; A. M. Steiner,; S. Förster,; A. Fery,; C. Kuttner,; M. Chanana, Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: Correlation of structure and optical properties. ACS Nano 2016, 10, 5740-5750.
[41]
P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297-302.
[42]
T. G. W. Edwardson,; K. L. Lau,; D. Bousmail,; C. J. Serpell,; H. F. Sleiman, Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 2016, 8, 162-170.
[43]
R. Schreiber,; J. Do,; E. M. Roller,; T. Zhang,; V. J. Schüller,; P. C. Nickels,; J. Feldmann,; T. Liedl, Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 2014, 9, 74-78.
[44]
A. P. Eskelinen,; R. J. Moerland,; M. A. Kostiainen,; P. Törmä, Self-assembled silver nanoparticles in a bow-tie antenna configuration. Small 2014, 10, 1057-1062.
[45]
W. Y. Liu,; L. Li,; S. Yang,; J. Gao,; R. S. Wang, Self-assembly of heterogeneously shaped nanoparticles into plasmonic metamolecules on DNA origami. Chem.—Eur. J. 2017, 23, 14177-14181.
[46]
M. Wang,; J. Y. Dong,; C. Zhou,; H. Xie,; W. H. Ni,; S. Wang,; H. L. Jin,; Q. B. Wang, Reconfigurable plasmonic diastereomers assembled by DNA Origami. ACS Nano 2019, 13, 13702-13708.
[47]
D. Nykypanchuk,; M. M. Maye,; D. van der Lelie,; O. Gang, DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549-552.
[48]
C. R. Laramy,; M. N. O’Brien,; C. A. Mirkin, Crystal engineering with DNA. Nat. Rev. Mater. 2019, 4, 201-224.
[49]
G. H. Kim,; J. W. Oh,; M. H. Lin,; H. Choe,; J. Oh,; J. H. Lee,; H. Noh,; J. M. Nam, Statistical modeling of ligand-mediated multimeric nanoparticle assembly. J. Phys. Chem. C 2019, 123, 21195-21206.
[50]
D. Zanchet,; C. M. Micheel,; W. J. Parak,; D. Gerion,; S. C. Williams,; A. P. Alivisatos, Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J. Phys. Chem. B 2002, 106, 11758-11763.
[51]
S. A. Claridge,; S. L. Goh,; J. M. J. Fréchet,; S. C. Williams,; C. M. Micheel,; A. P. Alivisatos, Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chem. Mater. 2005, 17, 1628-1635.
[52]
F. A. Aldaye,; H. F. Sleiman, Dynamic DNA templates for discrete gold nanoparticle assemblies:  Control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 2007, 129, 4130-4131.
[53]
A. H. Fu,; C. M. Micheel,; J. Cha,; H. Chang,; H. Yang,; A. P. Alivisatos, Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 2004, 126, 10832-10833.
[54]
L. Lermusiaux,; A. Sereda,; B. Portier,; E. Larquet,; S. Bidault, Reversible switching of the interparticle distance in DNA-templated gold nanoparticle dimers. ACS Nano 2012, 6, 10992-10998.
[55]
D. Zanchet,; C. M. Micheel,; W. J. Parak,; D. Gerion,; A. P. Alivisatos, Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 2001, 1, 32-35.
[56]
S. A. Claridge,; H. W. Liang,; S. R. Basu,; J. M. J. Fréchet,; A. P. Alivisatos, Isolation of discrete nanoparticle−DNA conjugates for plasmonic applications. Nano Lett. 2008, 8, 1202-1206.
[57]
M. P. Busson,; B. Rolly,; B. Stout,; N. Bonod,; E. Larquet,; A. Polman,; S. Bidault, Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand. Nano Lett. 2011, 11, 5060-5065.
[58]
A. M. Funston,; C. Novo,; T. J. Davis,; P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651-1658.
[59]
M. Hanauer,; S. Pierrat,; I. Zins,; A. Lotz,; C. Sönnichsen, Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 2007, 7, 2881-2885.
[60]
H. Q. Wang,; Z. X. Deng, Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 2015, 26, 1435-1438.
[61]
W. Ma,; H. Kuang,; L. B. Wang,; L. G. Xu,; W. S. Chang,; H. N. Zhang,; M. Z. Sun,; Y. Y. Zhu,; Y. Zhao,; L. Q. Liu, et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 2013, 3, 1934.
[62]
L. Y. Wang,; K. W. Smith,; S. Dominguez-Medina,; N. Moody,; J. M. Olson,; H. N. Zhang,; W. S. Chang,; N. Kotov,; S. Link, Circular differential scattering of single chiral self-assembled gold nanorod dimers. ACS Photonics 2015, 2, 1602-1610.
[63]
L. Lermusiaux,; S. Bidault, Increasing the morphological stability of DNA-templated nanostructures with surface hydrophobicity. Small 2015, 11, 5696-5704.
[64]
X. X. Jing,; F. Zhang,; M. C. Pan,; X. P. Dai,; J. Li,; L. H. Wang,; X. G. Liu,; H. Yan,; C. H. Fan, Solidifying framework nucleic acids with silica. Nat. Protoc. 2019, 14, 2416-2436.
[65]
T. Oh,; S. S. Park,; C. A. Mirkin, Stabilization of colloidal crystals engineered with DNA. Adv. Mater. 2019, 31, 1805480.
[66]
M. Garai,; T. S. Zhang,; N. Y. Gao,; H. Zhu,; Q. H. Xu, Single particle studies on two-photon photoluminescence of gold nanorod- nanosphere heterodimers. J. Phys. Chem. C 2016, 120, 11621-11630.
[67]
A. Lombardi,; M. P. Grzelczak,; E. Pertreux,; A. Crut,; P. Maioli,; I. Pastoriza-Santos,; L. M. Liz-Marzán,; F. Vallée,; N. Del Fatti, Fano interference in the optical absorption of an individual gold- silver nanodimer. Nano Lett. 2016, 16, 6311-6316.
[68]
C. L. Hao,; L. G. Xu,; W. Ma,; L. B. Wang,; H. Kuang,; C. L. Xu, Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response. Small 2014, 10, 1805-1812.
[69]
S. Pothorszky,; D. Zámbó,; T. Deák,; A. Deák, Assembling patchy nanorods with spheres: Limitations imposed by colloidal interactions. Nanoscale 2016, 8, 3523-3529.
[70]
J. Prasad,; I. Zins,; R. Branscheid,; J. Becker,; A. H. R. Koch,; G. Fytas,; U. Kolb,; C. Sönnichsen, Plasmonic core-satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 2015, 119, 5577-5582.
[71]
Y. H. Zheng,; T. Thai,; P. Reineck,; L. Qiu,; Y. M. Guo,; U. Bach, DNA-directed self-assembly of core-satellite plasmonic nanostructures: A highly sensitive and reproducible near-IR SERS sensor. Adv. Funct. Mater. 2013, 23, 1519-1526.
[72]
J. X. Li,; B. Q. Zhu,; Z. Zhu,; Y. C. Zhang,; X. J. Yao,; S. Tu,; R. D. Liu,; S. S. Jia,; C. J. Yang, Simple and rapid functionalization of gold nanorods with oligonucleotides using an mPEG-SH/Tween 20-assisted approach. Langmuir 2015, 31, 7869-7876.
[73]
K. Liu,; Y. H. Zheng,; X. Lu,; T. Thai,; N. A. Lee,; U. Bach,; J. J. Gooding, Biocompatible gold nanorods: One-step surface functionalization, highly colloidal stability, and low cytotoxicity. Langmuir 2015, 31, 4973-4980.
[74]
F. Schulz,; W. Friedrich,; K. Hoppe,; T. Vossmeyer,; H. Weller,; H. Lange, Effective PEGylation of gold nanorods. Nanoscale 2016, 8, 7296-7308.
[75]
T. A. Larson,; P. P. Joshi,; K. Sokolov, Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 2012, 6, 9182-9190.
[76]
A. G. Kanaras,; F. S. Kamounah,; K. Schaumburg,; C. J. Kiely,; M. Brust, Thioalkylated tetraethylene glycol: A new ligand for water soluble monolayer protected gold clusters. Chem. Commun. 2002, 20, 2294-2295.
[77]
L. Lermusiaux,; S. Bidault, Temperature-dependent plasmonic responses from gold nanoparticle dimers linked by double-stranded DNA. Langmuir 2018, 34, 14946-14953.
[78]
J. Piella,; N. G. Bastús,; V. Puntes, Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 2016, 28, 1066-1075.
[79]
X. F. Lu,; A. Dandapat,; Y. J. Huang,; L. Zhang,; Y. Rong,; L. W. Dai,; Y. Sasson,; J. W. Zhang,; T. Chen, Tris base assisted synthesis of monodispersed citrate-capped gold nanospheres with tunable size. RSC Adv. 2016, 6, 60916-60921.
[80]
B. Nikoobakht,; M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.
[81]
Q. Li,; X. L. Zhuo,; S. Li,; Q. F. Ruan,; Q. H. Xu,; J. F. Wang, Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 2015, 3, 801-812.
[82]
L. Scarabelli,; M. Coronado-Puchau,; J. J. Giner-Casares,; J. Langer,; L. M. Liz-Marzán, Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833-5842.
[83]
A. Sánchez-Iglesias,; I. Pastoriza-Santos,; J. Pérez-Juste,; B. Rodríguez- González,; F. J. García de Abajo,; L. M. Liz-Marzán, Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 2006, 18, 2529-2534.
[84]
X. Lin,; S. Lin,; Y. L. Liu,; M. M. Gao,; H. Y. Zhao,; B. K. Liu,; W. Hasi,; L. Wang, Facile synthesis of monodisperse silver nanospheres in aqueous solution via seed-mediated growth coupled with oxidative etching. Langmuir 2018, 34, 6077-6084.
[85]
T. K. Sau,; C. J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648-8649.
[86]
H. J. Chen,; X. S. Kou,; Z. Yang,; W. H. Ni,; J. F. Wang, Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233-5237.
[87]
X. Wu,; T. Ming,; X. Wang,; P. N. Wang,; J. F. Wang,; J. Y. Chen, High-photoluminescence-yield gold nanocubes: For cell imaging and photothermal therapy. ACS Nano 2010, 4, 113-120.
[88]
Z. A. Peng,; X. G. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183-184.
[89]
K. Boldt,; N. Kirkwood,; G. A. Beane,; P. Mulvaney, Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1-xS nanoparticles by in situ alloying. Chem. Mater. 2013, 25, 4731-4738.
[90]
J. Jasieniak,; L. Smith,; J. van Embden,; P. Mulvaney,; M. Califano, Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468-19474.
Nano Research
Pages 635-645
Cite this article:
Lermusiaux L, Nisar A, Funston AM. Flexible synthesis of high-purity plasmonic assemblies. Nano Research, 2021, 14(3): 635-645. https://doi.org/10.1007/s12274-020-3084-2
Topics:

818

Views

12

Crossref

0

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 13 May 2020
Revised: 01 September 2020
Accepted: 02 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return