AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Continuous mechanical tuning of plasmonic nanoassemblies for tunable and selective SERS platforms

Xiunan Yan1Qing Chen1Qun Song1Ziyu Huo1Ning Zhang2( )Mingming Ma1( )
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
Show Author Information

Graphical Abstract

Abstract

The continuous tuning of plasmonic nanoassembly’s structure is the key to manipulate their optical and catalytic properties. Herein, we report a strategy of using macroscopic deformation to continuously tune the structure and optical activity of massive plasmonic nanoassemblies that are embedded in elastic polymer matrix. Plasmonic gold nanoparticles (Au NPs) are assembled to nanochains (Au NCs) with defined length and further embedded into polyvinylpyrrolidone (PVP) matrix. The nanostructure and plasmonic properties of massive Au NCs in this Au NCs-PVP film can be simultaneously and continuously tuned, simply by reversible mechanical deformation of this elastic film. In this way, the surface-enhanced Raman scattering (SERS) enhancement factor of this film as a SERS substrate can be mechanically modulated in the range of 100 to 6.8 ×107. Meanwhile, the PVP matrix also serves as a selective diffusion barrier to eliminate the fluorescence interference of large biomolecules, which enables the Au NCs-PVP film as a convenient SERS substrate for quick and direct analysis of small molecule analytes in biological samples and food, avoiding the complicate and time-consuming sample pretreatment process.

Electronic Supplementary Material

Video
12274_2020_3085_MOESM1_ESM.mp4
12274_2020_3085_MOESM2_ESM.mp4
Download File(s)
12274_2020_3085_MOESM3_ESM.pdf (2.2 MB)

References

[1]
X. S. Qian,; Y. S. Zhao,; Y. Alsaid,; X. Wang,; M. T. Hua,; T. Galy,; H. Gopalakrishna,; Y. Y. Yang,; J. S. Cui,; N. Liu, et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048-1055.
[2]
J. H. Zhong,; X. Jin,; L. Y. Meng,; X. Wang,; H. S. Su,; Z. L. Yang,; C. T. Williams,; B. Ren, Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 2017, 12, 132-136.
[3]
M. S. Hu,; H. L. Chen,; C. H. Shen,; L. S. Hong,; B. R. Huang,; K. H. Chen,; L. C. Chen, Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102-106.
[4]
J. Zhao,; S. C. Nguyen,; R. Ye,; B. H. Ye,; H. Weller,; G. A. Somorjai,; A. P. Alivisatos,; F. D. Toste, A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci. 2017, 3, 482-488.
[5]
Y. Zhang,; T. Nelson,; S. Tretiak,; H. Guo,; G. C. Schatz, Plasmonic hot-carrier-mediated tunable photochemical reactions. ACS Nano 2018, 12, 8415-8422.
[6]
Z. H. Nie,; A. Petukhova,; E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15-25.
[7]
M. J. Banholzer,; J. E. Millstone,; L. D. Qin,; C. A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885-897.
[8]
R. Chikkaraddy,; B. de Nijs,; F. Benz,; S. J. Barrow,; O. A. Scherman,; E. Rosta,; A. Demetriadou,; P. Fox,; O. Hess,; J. J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127-130.
[9]
F. Benz,; M. K. Schmidt,; A. Dreismann,; R. Chikkaraddy,; Y. Zhang,; A. Demetriadou,; C. Carnegie,; H. Ohadi,; B. de Nijs,; R. Esteban, et al. Single-molecule optomechanics in “picocavities”. Science 2016, 354, 726-729.
[10]
C. Zong,; M. X. Xu,; L. J. Xu,; T. Wei,; X. Ma,; X. S. Zheng,; R. Hu,; B. Ren, Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946-4980.
[11]
S. Laing,; L. E. Jamieson,; K. Faulds,; D. Graham, Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017, 1, 0060.
[12]
M. Xu,; G. P. Tu,; M. W. Ji,; X. D. Wan,; J. J. Liu,; J. Liu,; H. P. Rong,; Y. L. Yang,; C. Wang,; J. T. Zhang, Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375-1379.
[13]
P. J. Vikesland, Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018, 13, 651-660.
[14]
J. M. Nam,; J. W. Oh,; H. Lee,; Y. D. Suh, Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc. Chem. Res. 2016, 49, 2746-2755.
[15]
S. Y. Ding,; J. Yi,; J. F. Li,; B. Ren,; D. Y. Wu,; R. Panneerselvam,; Z. Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.
[16]
V. V. Thacker,; L. O. Herrmann,; D. O. Sigle,; T. Zhang,; T. Liedl,; J. J. Baumberg,; U. F. Keyser, DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448.
[17]
J. W. Oh,; D. K. Lim,; G. H. Kim,; Y. D. Suh,; J. M. Nam, Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J. Am. Chem. Soc. 2014, 136, 14052-14059.
[18]
R. W. Taylor,; T. C. Lee,; O. A. Scherman,; R. Esteban,; J. Aizpurua,; F. M. Huang,; J. J. Baumberg,; S. Mahajan, Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”. ACS Nano 2011, 5, 3878-3887.
[19]
D. K. Lim,; K. S. Jeon,; H. M. Kim,; J. M. Nam,; Y. D. Suh, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60-67.
[20]
P. Y. Kim,; J. W. Oh,; J. M. Nam, Controlled Co-assembly of nanoparticles and polymer into ultralong and continuous one-dimensional nanochains. J. Am. Chem. Soc. 2015, 137, 8030-8033.
[21]
Y. D. Liu,; X. G. Han,; L. He,; Y. D. Yin, Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of Plasmon coupling. Angew. Chem., Int. Ed. 2012, 51, 6373-6377.
[22]
H. Zhang,; D. Y. Wang, Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. Angew. Chem., Int. Ed. 2008, 120, 4048-4051.
[23]
A. Klinkova,; H. Thérien-Aubin,; A. Ahmed,; D. Nykypanchuk,; R. M. Choueiri,; B. Gagnon,; A. Muntyanu,; O. Gang,; G. C. Walker,; E. Kumacheva, Structural and optical properties of self-assembled chains of plasmonic nanocubes. Nano Lett. 2014, 14, 6314-6321.
[24]
X. Y. Xu,; N. L. Rosi,; Y. H. Wang,; F. W. Huo,; C. A. Mirkin, Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 2006, 128, 9286-9287.
[25]
C. J. Zhang,; E. M. You,; Q. Jin,; Y. X. Yuan,; M. M. Xu,; S. Y. Ding,; J. L. Yao,; Z. G. Tian, Observing the dynamic “hot spots” on two-dimensional Au nanoparticles monolayer film. Chem. Commun. 2017, 53, 6788-6791.
[26]
H. L. Liu,; Z. L. Yang,; L. Y. Meng,; Y. D. Sun,; J. Wang,; L. B. Yang,; J. H. Liu,; Z. Q. Tian, Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc. 2014, 136, 5332-5341.
[27]
P. Hazarika,; B. Ceyhan,; C. M. Niemeyer, Reversible switching of DNA-gold nanoparticle aggregation. Angew. Chem., Int. Ed. 2004, 43, 6469-6471.
[28]
Q. Wang,; D. Li,; J. Y. Xiao,; F. C. Guo,; L. M. Qi, Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption. Nano Res. 2019, 12, 1563-1569.
[29]
J. L. Shen,; B. Q. Luan,; H. Pei,; Z. X. Yang,; X. L. Zuo,; G. Liu,; J. Y. Shi,; L. H. Wang,; R. H. Zhou,; W. L. Cheng, et al. Humidity-responsive single-nanoparticle-layer plasmonic films. Adv. Mater. 2017, 29, 1606796.
[30]
M. L. Zhang,; D. J. Magagnosc,; I. Liberal,; Y. Yu,; H. Yun,; H. R. Yang,; Y. T. Wu,; J. C. Guo,; W. X. Chen,; Y. J. Shin, et al. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nat. Nanotechnol. 2017, 12, 228-232.
[31]
Z. W. Zhou,; Z. Y. Zhao,; Y. Yu,; B. Ai,; H. Möhwald,; R. C. Chiechi,; J. K. W. Yang,; G. Zhang, From 1D to 3D: Tunable sub-10 nm gaps in large area devices. Adv. Mater. 2016, 28, 2956-2963.
[32]
T. Lee,; S. Kwon,; S. Jung,; H. Lim,; J. J. Lee, Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res. 2019, 12, 2554-2558.
[33]
S. E. J. Bell,; G. Charron,; E. Cortés,; J. Kneipp,; M. L. de la Chapelle,; J. Langer,; M. Procházka,; V. Tran,; S. Schlücker, Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem., Int. Ed. 2020, 59, 5454-5462.
[34]
G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
[35]
K. H. Su,; Q. H. Wei,; X. Zhang,; J. J. Mock,; D. R. Smith,; S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3, 1087-1090.
[36]
X. N. Yan,; P. Li,; B. B. Zhou,; X. H. Tang,; X. Y. Li,; S. Z. Weng,; L. B. Yang,; J. H. Liu, Optimal hotspots of dynamic surfaced-enhanced Raman spectroscopy for drugs quantitative detection. Anal. Chem. 2017, 89, 4875-4881.
[37]
H. Kang,; C. J. Heo,; H. C. Jeon,; S. Y. Lee,; S. M. Yang, Durable Plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices. ACS Appl. Mater. Interfaces 2013, 5, 4569-4574.
[38]
Y. Lu,; Y. T. Wang,; R. Chen,; J. Y. Zhao,; Z. Y. Jiang,; Y. F. Men, Cavitation in isotactic polypropylene at large strains during tensile deformation at elevated temperatures. Macromolecules 2015, 48, 5799-5806.
[39]
Y. Kim,; J. Zhu,; B. Yeom,; M. Di Prima,; X. L. Su,; J. G. Kim,; S. J. Yoo,; C. Uher,; N. A. Kotov, Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59-63.
[40]
H. Y. Zhao,; J. Jin,; W. J. Tian,; R. Li,; Z. Yu,; W. Song,; Q. Cong,; B. Zhao,; Y. Ozaki, Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. J. Mater. Chem. A 2015, 3, 4330-4337.
[41]
K. J. Savage,; M. M. Hawkeye,; R. Esteban,; A. G. Borisov,; J. Aizpurua,; J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574-577.
[42]
S. Y. Ding,; E. M. You,; Z. Q. Tian,; M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042-4076.
[43]
S. Yue,; X. T. Sun,; Y. Wang,; W. S. Zhang,; Z. R. Xu, Microparticles with size/charge selectivity and pH response for SERS monitoring of 6-thioguanine in blood serum. Sens. Actuators B: Chem. 2018, 273, 1539-1547.
[44]
O. D. Saugstad, Hypoxanthine as an indicator of hypoxia: Its role in health and disease through free radical production. Pediatr. Res. 1988, 23, 143-150.
[45]
A. Stefancu,; M. Badarinza,; V. Moisoiu,; S. D. Iancu,; O. Serban,; N. Leopold,; D. Fodor, SERS-based liquid biopsy of saliva and serum from patients with Sjögren's syndrome. Anal. Bioanal. Chem. 2019, 411, 5877-5883.
[46]
W. E. Wung,; S. B. Howell, Hypoxanthine concentrations in normal subjects and patients with solid tumors and leukemia. Cancer Res. 1984, 44, 3144-3148.
[47]
Y. L. Chen,; X. L. Li,; M. Yang,; L. B. Yang,; X. X. Han,; X. Jiang,; B. Zhao, High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering. Talanta 2017, 167, 236-241.
[48]
L. Silveira, Jr.; E. do Carmo Motta,; R. A. Zângaro,; M. T. T. Pacheco,; C. J. de Lima,; L. H. Moreira, Characterization of nutritional parameters in bovine milk by Raman spectroscopy with least squares modeling. Instrum. Sci. Technol. 2016, 44, 85-97.
Nano Research
Pages 275-284
Cite this article:
Yan X, Chen Q, Song Q, et al. Continuous mechanical tuning of plasmonic nanoassemblies for tunable and selective SERS platforms. Nano Research, 2021, 14(1): 275-284. https://doi.org/10.1007/s12274-020-3085-1
Topics:

830

Views

14

Crossref

0

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 14 May 2020
Revised: 07 August 2020
Accepted: 02 September 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return