AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

3D confined self-assembling of QD within super-engineering block copolymers as biocompatible superparticles enabling stimulus responsive solid state fluorescence

Xiaohong He1Kun Jia1( )Robert Marks2Yiguo Hu3Xiaobo Liu1
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610051, China
Show Author Information

Graphical Abstract

Abstract

Eliminating colloidal toxicity and enabling its intrinsic fluorescence in aggressive environmental conditions are the key challenges for commercializing hydrophobic cadmium based quantum dots (QD). Polyarylene ether nitriles (PEN) are an example of super-engineering thermoplastics that possess a unique combination of thermal stability, intrinsic fluorescence, biocompatibility and distinct emulsion self-assembly feature. Herein, the co-self-assembly of amphiphilic PEN with hydrophobic CdSe@ZnS QD, confined in the three-dimensional (3D) oil-in-water emulsion droplets, has been explored to fabricate fluorescent microparticles (FMP). It was found that these FMP demonstrated good biocompatibility (cell viability above 90%), while exhibiting a fluorescence emission in aqueous solution that was retained (intensity retention ratio above 80%) within the whole pH range of 1-14, as well as, after being subjected to autoclaving at 120 oC for 1 h. Interestingly, it was discovered that introduction of calcium ions in the emulsion self-assembly contributed to in-situ generation of phase changing nanoplates inside the FMP, which led to the photo-thermal modulated solid state fluorescence from drop-casted FMP film. Thanks to their versatile fluorescence, these FMP colloids were exploited as fluorescent probes for macrophages imaging, while micro-patterns with reversible changing of emission color were induced via thermal treatment and direct laser lithography.

Electronic Supplementary Material

Download File(s)
12274_2020_3086_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Y. Niu,; C. D. Pu,; R. C. Lai,; R. Y. Meng,; W. Z. Lin,; H. Y. Qin,; X. G. Peng, One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Res. 2017, 10, 1149-1162.
[2]
J. Z. Li,; J. L. Chen,; Y. M. Shen,; X. G. Peng, Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Res. 2018, 11, 3991-4004.
[3]
E. E. Lees,; T. L. Nguyen,; A. H. A. Clayton,; P. Mulvaney, The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter. ACS Nano 2009, 3, 1121-1128.
[4]
H. Huang,; J. K. Chen,; Y. T. Liu,; J. D. Lin,; S. X. Wang,; F. Huang,; D. Q. Chen, Lanthanide-doped core@multishell nanoarchitectures: Multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting. Small 2020, 16, 2000708.
[5]
S. Jung,; J. Park,; J. Bang,; J. Y. Kim,; C. Kim,; Y. Jeon,; S. H. Lee,; H. Jin,; S. Choi,; B. Kim, et al. Light-induced fluorescence modulation of quantum dot-crystal violet conjugates: Stochastic off-on-off cycles for multicolor patterning and super-resolution. J. Am. Chem. Soc. 2017, 139, 7603-7615.
[6]
W. Ren,; G. G. Lin,; C. Clarke,; J. J. Zhou,; D. Y. Jin, Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 2020, 32, 1901430.
[7]
Y. Q. Shang,; Z. J. Ning, Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. Natl. Sci. Rev. 2017, 4, 170-183.
[8]
R. H. Deng,; H. Li,; J. T. Zhu,; B. H. Li,; F. X. Liang,; F. Jia,; X. Z. Qu,; Z. Z. Yang, Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules 2016, 49, 1362-1368.
[9]
K. H. Ku,; J. M. Shin,; H. Yun,; G. R. Yi,; S. G. Jang,; B. J. Kim, Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion. Adv. Funct. Mater. 2018, 28, 1802961.
[10]
I. Wyman,; G. Njikang,; G. J. Liu, When emulsification meets self-assembly: The role of emulsification in directing block copolymer assembly. Prog. Polym. Sci. 2011, 36, 1152-1183.
[11]
J. M. Shin,; Y. J. Kim,; H. Yun,; G. R. Yi,; B. J. Kim, Morphological evolution of block copolymer particles: Effect of solvent evaporation rate on particle shape and morphology. ACS Nano 2017, 11, 2133-2142.
[12]
K. H. Ku,; Y. J. Kim,; G. R. Yi,; Y. S. Jung,; B. J. Kim, Soft patchy particles of block copolymers from interface-engineered emulsions. ACS Nano 2015, 9, 11333-11341.
[13]
K. H. Ku,; J. M. Shin,; D. Klinger,; S. G. Jang,; R. C. Hayward,; C. J. Hawker,; B. J. Kim, Particles with tunable porosity and morphology by controlling interfacial instability in block copolymer emulsions. ACS Nano 2016, 10, 5243-5251.
[14]
E. J. Kim,; J. M. Shin,; Y. J. Kim,; K. H. Ku,; H. Yun,; B. J. Kim, Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A-b-B diblock copolymers and C-type copolymers within emulsion droplets. Polym. Chem. 2019, 10, 2415-2423.
[15]
J. M. Shin,; Y. J. Kim,; K. H. Ku,; Y. J. Lee,; E. J. Kim,; G. R. Yi,; B. J. Kim, Aspect ratio-controlled synthesis of uniform colloidal block copolymer ellipsoids from evaporative emulsions. Chem. Mater. 2018, 30, 6277-6288.
[16]
J. M. Shin,; Y. J. Lee,; M. Kim,; K. H. Ku,; J. Lee,; Y. J. Kim,; H. Yun,; K. Liao,; C. J. Hawker,; B. J. Kim, Development of shape-tuned, monodisperse block copolymer particles through solvent-mediated particle restructuring. Chem. Mater. 2019, 31, 1066-1074.
[17]
A. Steinhaus,; R. Chakroun,; M. Müllner,; T. L. Nghiem,; M. Hildebrandt,; A. H. Gröschel, Confinement assembly of ABC triblock terpolymers for the high-yield synthesis of Janus nanorings. ACS Nano 2019, 13, 6269-6278.
[18]
J. P. Xu,; K. Wang,; J. Y. Li,; H. M. Zhou,; X. L. Xie,; J. T. Zhu, ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules 2015, 48, 2628-2636.
[19]
Z. Y. Hou,; M. Ren,; K. Wang,; Y. Yang,; J. P. Xu,; J. T. Zhu, Deformable block copolymer microparticles by controllable localization of pH-responsive nanoparticles. Macromolecules 2020, 53, 473-481.
[20]
S. G. Jang,; D. J. Audus,; D. Klinger,; D. V. Krogstad,; B. J. Kim,; A. Cameron,; S. W. Kim,; K. T. Delaney,; S. M. Hur,; K. L. Killops, et al. Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J. Am. Chem. Soc. 2013, 135, 6649-6657.
[21]
K. H. Ku,; Y. J. Lee,; Y. J. Kim,; B. J. Kim, Shape-anisotropic diblock copolymer particles from evaporative emulsions: Experiment and theory. Macromolecules 2019, 52, 1150-1157.
[22]
J. Lee,; K. H. Ku,; J. Kim,; Y. J. Lee,; S. G. Jang,; B. J. Kim, Light-responsive, shape-switchable block copolymer particles. J. Am. Chem. Soc. 2019, 141, 15348-15355.
[23]
J. Lee,; K. H. Ku,; C. H. Park,; Y. J. Lee,; H. Yun,; B. J. Kim, Shape and color switchable block copolymer particles by temperature and pH dual responses. ACS Nano 2019, 13, 4230-4237.
[24]
W. B. Hu,; X. H. He,; Y. Bai,; L. Zheng,; Y. G. Hu,; P. Wang,; X. B. Liu,; K. Jia, Synthesis and self-assembly of polyethersulfone-based amphiphilic block copolymers as microparticles for suspension immunosensors. Polym. Chem. 2020, 11, 1496-1503.
[25]
N. Yan,; X. J. Liu,; J. T. Zhu,; Y. T. Zhu,; W. Jiang, Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638-6646.
[26]
K. Jia,; J. N. Xie,; X. H. He,; D. W. Zhang,; B. S. Hou,; X. S. Li,; X. Zhou,; Y. Hong,; X. B. Liu, Polymeric micro-reactors mediated synthesis and assembly of ag nanoparticles into cube-like superparticles for SERS application. Chem. Eng. J. 2020, 395, 125123.
[27]
F. Tosi,; M. C. A. Stuart,; S. J. Wezenberg,; B. L. Feringa, Salen-based amphiphiles: Directing self-assembly in water by metal complexation. Angew. Chem., Int. Ed. 2019, 58, 14935-14939.
[28]
Y. Q. Wu,; H. Y. Tan,; Y. Yang,; Y. C. Li,; J. P. Xu,; L. X. Zhang,; J. T. Zhu, Regulating block copolymer assembly structures in emulsion droplets through metal ion coordination. Langmuir 2018, 34, 11495-11502.
[29]
L. Han,; M. Wang,; X. Jia,; W. Chen,; H. Qian,; F. He, Uniform two-dimensional square assemblies from conjugated block copolymers driven by π-π interactions with controllable sizes. Nat. Commun. 2018, 9, 865.
[30]
C. K. Wong,; A. F. Mason,; M. H. Stenzel,; P. Thordarson, Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions. Nat. Commun. 2017, 8, 1240.
[31]
Y. Ren,; Y. D. Zou,; Y. Liu,; X. R. Zhou,; J. H. Ma,; D. Y. Zhao,; G. F. Wei,; Y. J. Ai,; S. B. Xi,; Y. H. Deng, Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203-211.
[32]
H. Liu,; M. Siron,; M. Y. Gao,; D. Lu,; Y. Bekenstein,; D. D. Zhang,; L. T. Dou,; A. P. Alivisatos,; P. D. Yang, Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453-1458.
[33]
Y. Zhang,; Q. Yue,; L. Yu,; X. Y. Yang,; X. F. Hou,; D. Y. Zhao,; X. W. Cheng,; Y. H. Deng, Amphiphilic block copolymers directed interface coassembly to construct multifunctional microspheres with magnetic core and monolayer mesoporous aluminosilicate shell. Adv. Mater. 2018, 30, 1800345.
[34]
K. N. Zhu,; Z. Y. Zhu,; H. O. Zhou,; J. Y. Zhang,; S. Y. Liu, Precisely installing gold nanoparticles at the core/shell interface of micellar assemblies of triblock copolymers. Chin. Chem. Lett. 2017, 28, 1276-1284.
[35]
Y. W. Deng,; H. Chen,; X. F. Tao,; S. Trépout,; J. Ling,; M. H. Li, Synthesis and self-assembly of poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) and their oxidation-sensitive polymersomes. Chin. Chem. Lett. 2020, 31, 1931-1935.
[36]
S. Lu,; D. S. Z. Zhang,; D. Wei,; Y. Lin,; S. J. Zhang,; H. He,; X. B. Wei,; H. C. Gu,; H. Xu, Three-dimensional barcodes with ultrahigh encoding capacities: A flexible, accurate, and reproducible encoding strategy for suspension arrays. Chem. Mater. 2017, 29, 10398-10408.
[37]
W. J. Wu,; X. J. Yu,; M. Y. Gao,; S. Gull,; L. S. Shen,; W. W. Wang,; L. Li,; Y. Yin,; W. W. Li, Precisely encoded barcodes using tetrapod CdSe/CdS quantum dots with a large stokes shift for multiplexed detection. Adv. Funct. Mater. 2020, 30, 1906707.
[38]
P. Wang,; K. Jia,; X. F. Zhou,; X. T. Guan,; L. H. Wang,; Y. Tian,; C. H. Wu,; X. B. Liu, Ca2+ induced crosslinking of AIE-active polyarylene ether nitrile into fluorescent polymeric nanoparticles for cellular bioimaging. Macromol. Rapid Comm. 2017, 38, 1700360.
[39]
K. Jia,; P. Wang,; L. T. Yuan,; X. F. Zhou,; W. J. Chen,; X. B. Liu, Facile synthesis of luminescent silver nanoparticles and fluorescence interactions with blue-emitting polyarylene ether nitrile. J. Mater. Chem. C 2015, 3, 3522-3529.
[40]
E. Oh,; R. Liu,; A. Nel,; K. B. Gemill,; M. Bilal,; Y. Cohen,; I. L. Medintz, Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 2016, 11, 479-486.
[41]
J. N. Xie,; X. H. He,; W. B. Hu,; M. R. Zhou,; K. Jia,; X. B. Liu, Pb2+ coordination-driven self-assembly of amorphous amphiphilic aromatic block copolymer into semi-crystallized nanostructures with enhanced fluorescence emission. J. Mater. Chem. C 2019, 7, 1057-1064.
[42]
R. Weissleder,; M. Nahrendorf,; M. J. Pittet, Imaging macrophages with nanoparticles. Nat. Mater. 2014, 13, 125-138.
[43]
K. J. Moore,; I. Tabas, Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145, 341-355.
[44]
B. Z. Qian,; J. F. Li,; H. Zhang,; T. Kitamura,; J. H. Zhang,; L. R. Campion,; E. A. Kaiser,; L. A. Snyder,; J. W. Pollard, CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222-225.
[45]
S. J. Yi,; S. D. Allen,; Y. G. Liu,; B. Z. Ouyang,; X. M. Li,; P. Augsornworawat,; E. B. Thorp,; E. A. Scott, Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano 2016, 10, 11290-11303.
[46]
Y. Liu,; F. Han,; F. S. Li,; Y. Zhao,; M. S. Chen,; Z. W. Xu,; X. Zheng,; H. L. Hu,; J. M. Yao,; T. L. Guo, et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun. 2019, 10, 2409.
[47]
C. Sun,; S. J. Su,; Z. Y. Gao,; H. X. Liu,; H. Wu,; X. Y. Shen,; W. G. Bi, Stimuli-responsive inks based on perovskite quantum dots for advanced full-color information encryption and decryption. ACS Appl. Mater. Interfaces 2019, 11, 8210-8216.
[48]
Z. J. Liu,; C. H. Lin,; B. R. Hyun,; C. W. Sher,; Z. J. Lv,; B. Q. Luo,; F. L. Jiang,; T. Wu,; C. H. Ho,; H. C. Kuo, et al. Micro-light-emitting diodes with quantum dots in display technology. Light: Sci. Appl. 2020, 9, 83.
[49]
A. De San Luis,; M. Paulis,; J. R. Leiza, Co-encapsulation of CdSe/ZnS and CeO2 nanoparticles in waterborne polymer dispersions: Enhancement of fluorescence emission under sunlight. Soft Matter 2017, 13, 8039-8047.
[50]
L. Jiang,; H. Z. Ding,; S. Y. Lu,; T. Geng,; G. J. Xiao,; B. Zou,; H. Bi, Photoactivated fluorescence enhancement in F,N-doped carbon dots with piezochromic behavior. Angew. Chem., Int. Ed. 2020, 59, 9986-9991.
[51]
E. Moyen,; A. Kanwat,; S. Cho,; H. Jun,; R. Aad,; J. Jang, Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices. Nanoscale 2018, 10, 8591-8599.
[52]
Z. X. Lin,; R. Huang,; W. X. Zhang,; Y. Zhang,; J. Song,; H. L. Li,; D. J. Hou,; Y. Q. Guo,; C. Song,; N. Wan, et al. Highly luminescent and stable Si-based CsPbBr3 quantum dot thin films prepared by glow discharge plasma with real-time and in situ diagnosis. Adv. Funct. Mater. 2018, 28, 1805214.
[53]
S. Seth,; N. Mondal,; S. Patra,; A. Samanta, Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I. J. Phys. Chem. Lett. 2016, 7, 266-271.
[54]
K. Pielichowska,; K. Pielichowski, Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67-123.
Nano Research
Pages 285-294
Cite this article:
He X, Jia K, Marks R, et al. 3D confined self-assembling of QD within super-engineering block copolymers as biocompatible superparticles enabling stimulus responsive solid state fluorescence. Nano Research, 2021, 14(1): 285-294. https://doi.org/10.1007/s12274-020-3086-0
Topics:

772

Views

26

Crossref

0

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 07 July 2020
Revised: 01 September 2020
Accepted: 02 September 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return