AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode

Handong Jiao1Shuqiang Jiao1,2( )Wei-Li Song1Xiang Xiao2Dongmei She1Na Li1Haosen Chen1Jiguo Tu2Mingyong Wang2Daining Fang1( )
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Show Author Information

Graphical Abstract

Abstract

Rechargeable Al-ion batteries (AIBs) are considered as one of the most fascinating energy storage systems due to abundant Al resource and low cost. However, the cycling stability is subjected to critical problems for using Al foil as negative electrode, including Al dendrites, corrosion and pulverization. For addressing these problems, here a lightweight self-supporting N-doped carbon rod array (NCRA) is demonstrated for a long-life negative electrode in AIBs. Experimental analysis and first-principle calculations reveal the storage mechanism involving the induced deposition of N-containing function groups to Al as well as the ideal skeleton of the NCRA matrix for Al plating/stripping, which is favorable for regulating Al nucleation and suppressing dendrites growth. Compared with the Al foil, the NCRA exhibits lower areal mass density (~ 72% of Al foil), smaller thickness (40% of Al foil), but much longer cycle life (> 4 times of Al foil). Benefiting from the remarkable stability of the array structure, symmetric cells show excellent cycling stability with small voltage hysteresis (~ 80 mV) and meanwhile there are no corrosion and pulverization problems even after cycled for 120 hours. Besides, full cells also manifest long lifespan (1,500 cycles) and increased Coulombic efficiency (100±1%).

Electronic Supplementary Material

Video
12274_2020_3088_MOESM2_ESM.mp4
12274_2020_3088_MOESM3_ESM.mp4
Download File(s)
12274_2020_3088_MOESM1_ESM.pdf (3.9 MB)

References

[1]
N. Nitta,; F. X. Wu,; J. T. Lee,; G. Yushin, Li-ion battery materials: Present and future. Mater Today. 2015, 18, 252-264.
[2]
Y. K. Wang,; R. F. Zhang,; J. Chen,; H. Wu,; S. Y. Lu,; K. Wang,; H. L. Li,; C. J. Harris,; K. Xi,; R. V. Kumar, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.
[3]
K. Xi,; D. Q. He,; C. Harris,; Y. K. Wang,; C. Lai,; H. L. Li,; P. R. Coxon; S. J. Ding; C. Wang; R. V. Kumar, Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.
[4]
W. Xiao,; J. Zhou,; L. Yu,; D. H. Wang,; X. W. Lou, Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew. Chem., Int. Ed. 2016, 55, 7427-7431.
[5]
W. Weng,; C. Zeng,; W. Xiao, In situ pyrolysis concerted formation of Si/C hybrids during molten salt electrolysis of SiO2@Polydopamine. ACS Appl. Mater. Interfaces 2019, 11, 9156-9163.
[6]
W. Wang,; B. Jiang,; W. Y. Xiong,; H. Sun,; Z. S. Lin,; L. W. Hu,; J. G. Tu,; J. G. Hou,; H. M. Zhu,; S. Q. Jiao, A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 2013, 3, 3383.
[7]
N. Jayaprakash,; S. K. Das,; L. A. Archer, The rechargeable aluminum-ion battery. Chem. Commun. 2011, 47, 12610-12612.
[8]
M. Beltzer, Aluminum-halogen secondary battery method with molten electrolyte. U.S. Patent 3,632,448, January 4, 1972.
[9]
M. C. Lin,; M. Gong,; B. G. Lu,; Y. P. Wu,; D. Y. Wang,; M. Y. Guan,; M. Angell,; C. X. Chen,; J. Yang,; B. J. Hwang et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324-328.
[10]
H. B. Sun,; W. Wang,; Z. J. Yu,; Y. Yuan,; S. Wang,; S. Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 2015, 51, 11892-11895.
[11]
H. Chen; F. Guo,; Y. J. Liu,; T. Q. Huang,; B. N. Zheng,; N. Ananth,; Z. Xu,; W. W. Gao,; C. Gao, A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 2017, 29, 1605958.
[12]
H. Chen,; H. Y. Xu,; S. Y. Wang,; T. Q. Huang,; J. B. Xi,; S. Y. Cai,; F. Guo,; Z. Xu,; W. W. Gao,; C. Gao, Ultrafast all-climate aluminum- graphene battery with quarter-million cycle life. Sci. Adv. 2017, 3, eaao7233.
[13]
S. Q. Jiao,; H. P. Lei,; J. G. Tu,; J. Zhu,; J. X. Wang,; X. H. Mao, An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/ graphite battery and recycling of the graphitic cathode into graphene. Carbon 2016, 109, 276-281.
[14]
P. Wang,; H. S. Chen,; N. Li,; X. Y. Zhang,; S. Q. Jiao,; W. L. Song,; D. N. Fang, Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Mater. 2018, 13, 103-111.
[15]
M. Chiku,; H. Takeda,; S. Matsumura,; E. Higuchi,; H. Inoue, Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2015, 7, 24385-24389.
[16]
S. C. Gu,; H. L. Wang,; C. Wu,; Y. Bai,; H. Li,; F. Wu, Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017, 6, 9-17.
[17]
L. X. Geng,; G. C. Lv,; X. B. Xing,; J. C. Guo, Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 2015, 27, 4926-4929.
[18]
S. Wang,; S. Q. Jiao,; J. X. Wang,; H. S. Chen,; D. H. Tian,; H. P. Lei,; D. N. Fang, High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 2017, 11, 469-477.
[19]
Z. J. Yu,; Z. P. Kang,; Z. Q. Hu,; J. H. Lu,; Z. G. Zhou,; S. Q. Jiao, Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem. Commun. 2016, 52, 10427-10430.
[20]
S. Wang,; Z. J. Yu,; J. G. Tu,; J. X. Wang,; D. H. Tian,; Y. J. Liu,; S. Q. Jiao, A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/ Ni3S2@graphene. Adv. Energy Mater. 2016, 6, 1600137.
[21]
H. D. Jiao,; D. H. Tian,; S. J. Li,; C. P. Fu,; S. Q. Jiao, A rechargeable Al-Te battery. ACS Appl. Energy Mater. 2018, 1, 4924-4930.
[22]
X. F. Zhang,; S. Q. Jiao,; J. G. Tu,; W. L. Song,; X. Xiao,; S. J. Li,; M. Y. Wang,; H. P. Lei,; D. H. Tian,; H. S. Chen, et al. Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci. 2019, 12, 1918-1927.
[23]
H. D. Jiao,; S. Q. Jiao,; W. L. Song,; H. S. Chen,; M. Y. Wang,; J. G. Tu,; D. N. Fang. Cu-Al composite as the negative electrode for long-life Al-ion batteries. J. Electrochem. Soc. 2019, 166, A3539.
[24]
H. D. Jiao,; S. Q. Jiao,; S. J. Li,; W. L. Song,; H. S. Chen,; J. G. Tu,; M. Y. Wang,; D. H. Tian,; D. N. Fang. Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chem. Eng. J. 2019, 391, 123594.
[25]
Y. S. Hong,; N. Li,; H. S. Chen,; P. Wang,; W. L. Song,; D. N. Fang, In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field. Energy Storage Mater. 2018, 11, 118-126.
[26]
B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.
[27]
B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508-517.
[28]
L. J. Chen,; H. Chen,; Z. Wang,; X. Z. Gong,; X. H. Chen,; M. Y. Wang,; S. Q. Jiao, Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode. Chem. Eng. J. 2019, 363, 270-277.
[29]
D. Xie,; X. H. Xia,; Y. Zhong,; Y. D. Wang,; D. H. Wang,; X. L. Wang,; J. P. Tu, Exploring advanced sandwiched arrays by vertical Graphene and N-doped carbon for enhanced sodium storage. Adv. Energy Mater. 2017, 7, 1601804.
[30]
S. Schoser,; G. Bräuchle,; J. Forget,; K. Kohlhof,; T. Weber,; J. Voigt,; B. Rauschenbach, XPS investigation of AlN formation in aluminum alloys using plasma source ion implantation. Surf. Coat. Technol. 1998, 103-104, 222-226.
[31]
W. Österle,; I. Dörfel,; I. Urban,; T. Reier,; J. W. Schultze, XPS and XTEM study of AlN formation by N+2 implantation of aluminium. Surf. Coat. Technol. 1998, 102, 168-174.
[32]
D. Manova,; V. Dimitrova,; W. Fukarek,; D. Karpuzov, Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarised infra-red reflection. Surf. Coat. Technol. 1998, 106, 205-208.
[33]
W. Wang,; J. H. Zhou,; Z. P. Wang,; L. Y. Zhao,; P. H. Li,; Y. Yang,; C. Yang,; H. X. Huang,; S. J. Guo, Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.
[34]
C. Ho,; I. D. Raistrick,; R. A. Huggins, Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980, 127, 343-350.
Nano Research
Pages 646-653
Cite this article:
Jiao H, Jiao S, Song W-L, et al. Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Research, 2021, 14(3): 646-653. https://doi.org/10.1007/s12274-020-3088-y
Topics:

864

Views

22

Crossref

0

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 25 June 2020
Revised: 13 August 2020
Accepted: 05 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return