AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition

Shuaishuai Ding1,3Yuan Tian3,4( )Xiang Liu2Ye Zou3Huanli Dong3Wenbo Mi2( )Wenping Hu1,3,5,6( )
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, China
Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Physics and Electronics, Hunan University, Changsha 410082, China
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
Show Author Information

Graphical Abstract

Abstract

The spinterface formed between ferromagnetic (FM) electrode and organic materials is vital for performance optimization in organic spin valve (OSV). Half-metallic Fe3O4 with drastic change in structure, conductivity and magnetic property near Verwey transition can serve as an intrinsic spinterface regulator. However, such modulating effect of Fe3O4 in OSV has not been comprehensively investigated, especially below the Verwey transition temperature (Tv). Here, we highlight the important role of Fe3O4 electrode in reliable-working and controllable Fe3O4/P3HT/Co polymer spin valves by investigating the magnetoresistance (MR) above and below Tv. In order to distinguish between different contributions to charge transport and related MR responses, the systematic electronic and magnetic characterizations were carried out in full temperature range. Particularly, the first-order metal-insulator transition in Fe3O4 has a dramatic effect on the MR enhancement of polymer spin valves at Tv. Moreover, both the conducting mode transformation and MR line shape modulation could be accomplished across Tv. This research renders unique scenario to multimodal storage by external thermodynamic parameters, and further reveals the importance of spin-dependent interfacial modification in polymer spin valves.

Electronic Supplementary Material

Download File(s)
12274_2020_3089_MOESM1_ESM.pdf (1.7 MB)

References

[1]
L. D. Guo,; Y. Qin,; X. R. Gu,; X. W. Zhu,; Q. Zhou,; X. N. Sun, Spin transport in organic molecules. Front. Chem. 2019, 7, 428.
[2]
Y. Wang,; L. J. Sun,; C. Wang,; F. X. Yang,; X. C. Ren,; X. T. Zhang,; H. L. Dong,; W. P. Hu, Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492-1530.
[3]
H. Jiang,; W. P. Hu, The emergence of organic single-crystal electronics. Angew. Chem., Int. Ed. 2020, 59, 1408-1428.
[4]
B. Kumar,; B. K. Kaushik,; Y. S. Negi, Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review. Polym. Rev. 2014, 54, 33-111.
[5]
P. Wei,; S. T. Li,; D. F. Li,; H. Yu,; X. D. Wang,; C. C. Xu,; Y. D. Yang,; L. J. Bu,; G. H. Lu, Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Res. 2018, 11, 5835-5848.
[6]
Y. H. Zhang,; Z. Z. Luo,; F. R. Hu,; H. Y. Nan,; X. Y. Wang,; Z. H. Ni,; J. B. Xu,; Y. Shi,; X. R. Wang, Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 2017, 10, 1336-1344.
[7]
L. Zheng,; J. F. Li,; K. Zhou,; X. X. Yu,; X. T. Zhang,; H. L. Dong,; W. P. Hu, Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 2020, 13, 1976-1981.
[8]
J. W. Wang,; W. Deng,; W. Wang,; R. F. Jia,; X. Z. Xu,; Y. L. Xiao,; X. J. Zhang,; J. S. Jie,; X. H. Zhang, External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Res. 2019, 12, 2796-2801.
[9]
J. Tsurumi,; H. Matsui,; T. Kubo,; R. Häusermann,; C. Mitsui,; T. Okamoto,; S. Watanabe,; J. Takeya, Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 2017, 13, 994-998.
[10]
T. D. Nguyen,; G. Hukic-Markosian,; F. J. Wang,; L. Wojcik,; X. G. Li,; E. Ehrenfreund,; Z. V. Vardeny, Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 2010, 9, 345-352.
[11]
Z. H. Xiong,; D. Wu,; Z. V. Vardeny,; J. Shi, Giant magnetoresistance in organic spin-valves. Nature 2004, 427, 821-824.
[12]
J. Devkota,; R. G. Geng,; R. C. Subedi,; T. D. Nguyen, Organic spin valves: A review. Adv. Funct. Mater. 2016, 26, 3881-3898.
[13]
L. D. Guo,; X. R. Gu,; X. W. Zhu,; X. N. Sun, Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.
[14]
X. N. Sun,; A. Bedoya-Pinto,; Z. P. Mao,; M. Gobbi,; W. J. Yan,; Y. L. Guo,; A. Atxabal,; R. Llopis,; G. Yu,; Y. Q. Liu, et al. Active morphology control for concomitant long distance spin transport and photoresponse in a single organic device. Adv. Mater. 2016, 28, 2609-2615.
[15]
X. N. Sun,; S. Vélez,; A. Atxabal,; A. Bedoya-Pinto,; S. Parui,; X. W. Zhu,; R. Llopis,; F. Casanova,; L. E. Hueso, A molecular spin-photovoltaic device. Science 2017, 357, 677-680.
[16]
D. L. Sun,; M. Fang,; X. S. Xu,; L. Jiang,; H. W. Guo,; Y. M. Wang,; W. T. Yang,; L. F. Yin,; P. C. Snijders,; T. Z. Ward, et al. Active control of magnetoresistance of organic spin valves using ferroelectricity. Nat. Commun. 2014, 5, 4396.
[17]
M. Prezioso,; A. Riminucci,; I. Bergenti,; P. Graziosi,; D. Brunel,; V. A. Dediu, Electrically programmable magnetoresistance in multifunctional organic-based spin valve devices. Adv. Mater. 2011, 23, 1371-1375.
[18]
T. D. Nguyen,; E. Ehrenfreund,; Z. V. Vardeny, Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 2012, 337, 204-209.
[19]
J. P. Prieto-Ruiz,; S. G. Miralles,; H. Prima-García,; A. López-Muñoz,; A. Riminucci,; P. Graziosi,; M. Aeschlimann,; M. Cinchetti,; V. A. Dediu,; E. Coronado, Enhancing light emission in interface engineered spin-OLEDs through spin-polarized injection at high voltages. Adv. Mater. 2019, 31, 1806817.
[20]
F. Ngassam,; E. Urbain,; L. Joly,; S. Boukari,; J. Arabski,; F. Bertran,; P. Le Fèvre,; G. Garreau,; P. Wetzel,; M. Alouani, et al. Fluorinated phthalocyanine molecules on ferromagnetic cobalt: A highly polarized spinterface. J. Phys. Chem. C 2019, 123, 26475-26480.
[21]
M. F. Sun,; X. C. Wang,; W. B. Mi, Large magnetoresistance in Fe3O4/4, 4′-bipyridine/Fe3O4 organic magnetic tunnel junctions. J. Phys. Chem. C 2018, 122, 3115-3122.
[22]
M. Galbiati,; S. Tatay,; C. Barraud,; A. V. Dediu,; F. Petroff,; R. Mattana,; P. Seneor, Spinterface: Crafting spintronics at the molecular scale. MRS Bull. 2014, 39, 602-607.
[23]
M. Cinchetti,; V. A. Dediu,; L. E. Hueso, Activating the molecular spinterface. Nat. Mater. 2017, 16, 507-515.
[24]
S. H. Liang,; H. X. Yang,; H. W. Yang,; B. S. Tao,; A. Djeffal,; M. Chshiev,; W. C. Huang,; X. G. Li,; A. Ferri,; R. Desfeux, et al. Ferroelectric control of organic/ferromagnetic spinterface. Adv. Mater. 2016, 28, 10204-10210.
[25]
A. Fernández-Pacheco,; J. Orna,; J. M. De Teresa,; P. A. Algarabel,; L. Morellon,; J. A. Pardo,; M. R. Ibarra,; E. Kampert,; U. Zeitler, High-field Hall effect and magnetoresistance in Fe3O4 epitaxial thin films up to 30 Tesla. Appl. Phys. Lett. 2009, 95, 262108.
[26]
X. H. Liu,; C. F. Chang,; L. H. Tjeng,; A. C. Komarek,; S. Wirth, Large magnetoresistance effects in Fe3O4. J. Phys. Condense. Matter 2019, 31, 225803.
[27]
M. Bohra,; N. Agarwal,; V. Singh, A short review on verwey transition in nanostructured Fe3O4 materials. J. Nanomater. 2019, 2019, 8457383.
[28]
X. M. Zhang,; Q. L. Ma,; K. Suzuki,; A. Sugihara,; G. W. Qin,; T. Miyazaki,; S. Mizukami, Magnetoresistance effect in rubrene-based spin valves at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 4685-4692.
[29]
X. M. Zhang,; S. Mizukami,; T. Kubota,; Q. L. Ma,; M. Oogane,; H. Naganuma,; Y. Ando,; T. Miyazaki, Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat. Commun. 2013, 4, 1392.
[30]
X. M. Zhang,; J. W. Tong,; H. E. Zhu,; Z. C. Wang,; L. Q. Zhou,; S. G. Wang,; T. Miyashita,; M. Mitsuishi,; G. W. Qin, Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J. Mater. Chem. C 2017, 5, 5055-5062.
[31]
E. J. W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327-328.
[32]
P. Dey,; R. Rawat,; S. R. Potdar,; R. J. Choudhary,; A. Banerjee, Temperature driven transition from giant to tunneling magneto-resistance in Fe3O4/Alq3/Co spin valve: Role of Verwey transition of Fe3O4. J. Appl. Phys. 2014, 115, 17C110.
[33]
J. L. Pan,; H. G. Guo,; M. Wang,; H. Yang,; H. W. Hu,; P. Liu,; H. W. Zhu, Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 2020, 13, 621-629.
[34]
M. Ziese,; H. J. Blythe, Magnetoresistance of magnetite. J. Phys. Condens. Matter 2000, 12, 13-28.
[35]
X. Liu,; W. B. Mi,; Q. Zhang,; X. X. Zhang, Magnetoresistance of epitaxial and polycrystalline Fe3O4 films near Verwey transition. Appl. Phys. Lett. 2018, 113, 012401.
[36]
X. Liu,; W. B. Mi, Structure, magnetic and transport properties of Fe3O4 near verwey transition. Acta Phys. Sin. 2020, 69, 040505.
[37]
S. S. Ding,; Y. Tian,; H. L. Dong,; D. B. Zhu,; W. P. Hu, Anisotropic magnetoresistance in NiFe-based polymer spin valves. ACS Appl. Mater. Interfaces 2019, 11, 11654-11659.
[38]
H. Vinzelberg,; J. Schumann,; D. Elefant,; R. B. Gangineni,; J. Thomas,; B. Büchner, Low temperature tunneling magnetoresistance on (La, Sr)MnO3∕Co junctions with organic spacer layers. J. Appl. Phys. 2008, 103, 093720.
[39]
S. S. Ding,; Y. Tian,; Y. Li,; W. B. Mi,; H. L. Dong,; X. T. Zhang,; W. P. Hu,; D. B. Zhu, Inverse magnetoresistance in polymer spin valves. ACS Appl. Mater. Interfaces 2017, 9, 15644-15651.
[40]
S. S. Ding,; Y. Tian,; H. L. Wang,; Z. Zhou,; W. B. Mi,; Z. J. Ni,; Y. Zou,; H. L. Dong,; H. J. Gao,; D. B. Zhu, et al. Reliable spin valves of conjugated polymer based on mechanically transferrable top electrodes. ACS Nano 2018, 12, 12657-12664.
[41]
S. P. Sena,; R. A. Lindley,; H. J. Blythe,; C. Sauer,; M. Al-Kafarji,; G. A. Gehring, Investigation of magnetite thin films produced by pulsed laser deposition. J. Magnet. Magnet. Mater. 1997, 176, 111-126.
[42]
G. Q. Gong,; A. Gupta,; G. Xiao,; W. Qian,; V. P. Dravid, Magnetoresistance and magnetic properties of epitaxial magnetite thin films. Phys. Rev. B 1997, 56, 5096-5099.
[43]
R. Prakash,; R. J. Choudhary,; L. S. S. Chandra,; N. Lakshmi,; D. M. Phase, Electrical and magnetic transport properties of Fe3O4 thin films on a GaAs(100) substrate. J. Phys. Condense. Matter 2007, 19, 486212.
[44]
X. H. Liu,; W. Liu,; Z. D. Zhang, Extremely low coercivity in Fe3O4 thin film grown on Mg2TiO4 (001). RSC Adv. 2017, 7, 43648-43654.
[45]
A. Bollero,; M. Ziese,; R. Höhne,; H. C. Semmelhack,; U. Köhler,; A. Setzer,; P. Esquinazi, Influence of thickness on microstructural and magnetic properties in Fe3O4 thin films produced by PLD. J. Magnet. Magnet. Mater. 2005, 285, 279-289.
[46]
X. Liu,; W. B. Mi,; Q. Zhang,; X. X. Zhang, Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films. Phys. Rev. B 2017, 96, 214434.
[47]
R. Wu,; J. Z. Wei,; X. L. Peng,; J. B. Fu,; S. Q. Liu,; Y. Zhang,; Y. H. Xia,; C. S. Wang,; Y. C. Yang,; J. B. Yang, The asymmetric magnetization reversal in exchange biased granular Co/CoO films. Appl. Phys. Lett. 2014, 104, 182403.
[48]
Z. R. Li,; X. C. Wang,; H. T. Dai,; W. B. Mi,; H. L. Bai, Spin dependent transport and magnetic properties in Fe4N/tris(8-hydroxyquinoline) aluminum/Co organic spin valves fabricated by facing-target sputtering. Thin Solid Films 2015, 588, 26-33.
[49]
W. D. Wang,; M. H. Yu,; M. Batzill,; J. B. He,; U. Diebold,; J. K. Tang, Enhanced tunneling magnetoresistance and high-spin polarization at room temperature in a polystyrene-coated Fe3O4 granular system. Phys. Rev. B 2006, 73, 134412.
[50]
M. Groesbeck,; H. L. Liu,; M. Kavand,; E. Lafalce,; J. Y. Wang,; X. Pan,; T. H. Tennahewa,; H. Popli,; H. Malissa,; C. Boehme, et al. Separation of spin and charge transport in pristine π-conjugated polymers. Phys. Rev. Lett. 2020, 124, 067702.
[51]
W. T. Yang,; Q. Shi,; T. Miao,; Q. Li,; P. Cai,; H. Liu,; H. X. Lin,; Y. Bai,; Y. Y. Zhu,; Y. Yu, et al. Achieving large and nonvolatile tunable magnetoresistance in organic spin valves using electronic phase separated manganites. Nat. Commun. 2019, 10, 3877.
[52]
S. M. Sze,; K. K. Ng, Physics of Semiconductor Devices: 3rd ed. New Jersey: John Wiley & Sons, Inc, 2007; pp 1-815.
[53]
R. C. Subedi,; R. G. Geng,; H. M. Luong,; W. C. Huang,; X. G. Li,; L. A. Hornak,; T. D. Nguyen, Large magnetoelectric effect in organic ferroelectric copolymer-based multiferroic tunnel junctions. Appl. Phys. Lett. 2017, 110, 053302.
[54]
P. L. Varo,; J. A. J. Tejada,; J. A. L. Villanueva,; M. J. Deen, Space-charge and injection limited current in organic diodes: A unified model. Org. Electron. 2014, 15, 2526-2535.
[55]
J. W. Tong,; L. X. Ruan,; X. N. Yao,; G. W. Qin,; X. M. Zhang, Defect states dependence of spin transport in iron phthalocyanine spin valves. Phys. Rev. B 2019, 99, 054406.
Nano Research
Pages 304-310
Cite this article:
Ding S, Tian Y, Liu X, et al. Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Research, 2021, 14(1): 304-310. https://doi.org/10.1007/s12274-020-3089-x
Topics:

912

Views

14

Crossref

0

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 23 June 2020
Revised: 03 September 2020
Accepted: 03 September 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return