AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction

Xun Cao1,2,§Dongdong Peng2,§Cao Wu2,3Yongmin He2Chaojiang Li4Bowei Zhang5Changcun Han1Junsheng Wu5( )Zheng Liu2( )Yizhong Huang1,2( )
College of Science, Hubei University of Technology, 28 Nanli Road, Hongshan District, Wuhan 430068, China
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing 211100, China
School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China

§ Xun Cao and Dongdong Peng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The catalysis of Au thin film could be improved by fabrication of array structures in large area. In this work, nanoimprint lithography has been developed to fabricate flexible Au micro-array (MA) electrodes with ~ 100% coverage. Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional (3D) nanostructures with a maximum depth of 6 atomic layers. In-situ observation unveils the crystal growth in the form of twinning. High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade. Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample; MAs with higher mesh grade have a greater active site utilisation ratio (ASUR), which is important to build electrochemical double layer for efficient charge transfer. Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell.

Electronic Supplementary Material

Download File(s)
12274_2020_3090_MOESM1_ESM.pdf (2.7 MB)

References

[1]
N. Armaroli,; V. Balzani, Towards an electricity-powered world. Energy Environ. Sci. 2011, 4, 3193-3222.
[2]
M. S. Whittingham, History, evolution, and future status of energy storage. Proc. IEEE 2012, 100, 1518-1534.
[3]
M. Z. F. Kamarudin,; S. K. Kamarudin,; M. S. Masdar,; W. R. W. Daud, Review: Direct ethanol fuel cells. Int. J. Hydrogen Energy 2013, 38, 9438-9453.
[4]
G. Hoogers, Fuel Cell Technology Handbook; CRC Press: Boca Raton, 2002.
[5]
M. Haruta, Catalysis: Gold rush. Nature 2005, 437, 1098-1099.
[6]
P. Rodriguez,; Y. Kwon,; M. T. M. Koper, The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 2012, 4, 177-182.
[7]
S. Rousseau,; C. Coutanceau,; C. Lamy,; J. M. Léger, Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J. Power Sources 2006, 158, 18-24.
[8]
S. Y. Shen,; T. S. Zhao,; J. B. Xu,; Y. S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 2010, 195, 1001-1006.
[9]
R. R. Brooks, Noble Metals and Biological Systems: Their Role in Medicine, Mineral Exploration, and the Environment; CRC Press: Boca Raton, 1992.
[10]
T. A. Baker,; X. Y. Liu,; C. M. Friend, The mystery of gold’s chemical activity: Local bonding, morphology and reactivity of atomic oxygen. Phys. Chem. Chem. Phys. 2011, 13, 34-46.
[11]
P. Rodriguez,; M. T. M. Koper, Electrocatalysis on gold. Phys. Chem. Chem. Phys. 2014, 16, 13583-13594.
[12]
H. C. Liu,; E. Iglesia, Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J. Phys. Chem. B 2005, 109, 2155-2163.
[13]
Z. X. Liang,; T. S. Zhao,; J. B. Xu,; L. D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203-2208.
[14]
X. Cao,; C. J. Li,; Y. Lu,; B. W. Zhang,; Y. Wu,; Q. Liu,; J. S. Wu,; J. Teng,; W. G. Yan,; Y. Z. Huang, Catalysis of Au nano-pyramids formed across the surfaces of ordered Au nano-ring arrays. J. Catal. 2019, 377, 389-399.
[15]
S. Y. Chou,; P. R. Krauss,; P. J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85-87.
[16]
B. D. Gates,; Q. B. Xu,; M. Stewart,; D. Ryan,; C. G. Willson,; G. M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171-1196.
[17]
N. Tucher,; O. Höhn,; H. Hauser,; C. Müller,; B. Bläsi, Characterizing the degradation of PDMS stamps in nanoimprint lithography. Microelectron. Eng. 2017, 180, 40-44.
[18]
X. Cao,; C. J. Li,; D. D. Peng,; Y. Lu,; K. Huang,; J. S. Wu,; C. W. Zhao,; Y. Z. Huang, Highly strained Au nanoparticles for improved electrocatalysis of ethanol oxidation reaction. J. Phys. Chem. Lett. 2020, 11, 3005-3013.
[19]
L. Vitos,; A. V. Ruban,; H. L. Skriver,; J. Kollár, The surface energy of metals. Surf. Sci. 1998, 411, 186-202.
[20]
P. W. Voorhees, The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231-252.
[21]
B. P. Jia,; L. Gao, Growth of well-defined cubic hematite single crystals: Oriented aggregation and ostwald ripening. Cryst. Growth Des. 2008, 8, 1372-1376.
[22]
C. J. Li,; X. Cao,; W. H. Li,; B. W. Zhang,; L. Q. Xiao, Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. J. Alloys Compd. 2019, 773, 762-769.
[23]
C. J. Li,; Y. H. Rao,; B. W. Zhang,; K. Huang,; X. Cao,; D. D. Peng,; J. S. Wu,; L. Q. Xiao,; Y. Z. Huang, Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant. Chemosphere 2019, 214, 341-348.
[24]
C. J. Li,; B. W. Zhang,; Y. Li,; S. J. Hao,; X. Cao,; G. Yang,; J. S. Wu,; Y. Z. Huang, Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2019, 244, 56-62.
[25]
Y. Rao,; X. Cao,; C. Li,; L. Xiao, Bifunctional copper cathode induced oxidation of glycerol with liquid plasma discharge. Sep. Purif. Technol. 2019, 220, 328-333.
[26]
Y. Wang,; S. Z. Zou,; W. B. Cai, Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507-1534.
[27]
Y. Z. Zhao,; X. M. Li,; J. M. Schechter,; Y. A. Yang, Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv. 2016, 6, 5384-5390.
[28]
Y. F. Yao,; Z. Xu,; F. Cheng,; W. C. Li,; P. X. Cui,; G. Z. Xu,; S. Xu,; P. Wang,; G. D. Sheng,; Y. D. Yan, et al. Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy. Energy Environ. Sci. 2018, 11, 407-416.
[29]
C. You,; Y. Y. Ji,; Z. A. Liu,; X. L. Xiong,; X. P. Sun, Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chem. Eng. 2018, 6, 1527-1531.
[30]
Y. Li,; F. M. Li,; X. Y. Meng,; S. N. Li,; J. H. Zeng,; Y. Chen, Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913-1920.
[31]
M. B. Cortie,; A. I. Maaroof,; G. B. Smith, Electrochemical capacitance of mesoporous gold. Gold Bull. 2005, 38, 14-22.
[32]
K. Huang,; D. D. Peng,; B. W. Zhang,; X. Cao,; S. J. Hao,; G. Yang,; Y. B. Dong,; J. S. Wu,; Y. Z. Huang, Three dimension (3D) hierarchical electrode (Au/rGO/CoPt3) for electrooxidation of ethanol in fuel cells. Int. J. Hydrogen Energy 2018, 43, 12596-12602.
Nano Research
Pages 311-319
Cite this article:
Cao X, Peng D, Wu C, et al. Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction. Nano Research, 2021, 14(1): 311-319. https://doi.org/10.1007/s12274-020-3090-4
Topics:

841

Views

3

Crossref

0

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 13 July 2020
Revised: 04 September 2020
Accepted: 05 September 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return