AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes

Zinan Chen1Qiang Su1Zhiyuan Qin1Shuming Chen1,2( )
Guangdong University Key Lab for Advanced Quantum Dot Displays and Lighting, Shenzhen Key Lab for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
Show Author Information

Graphical Abstract

Abstract

The aging characteristics, e.g., the evolution of efficiency and luminance of quantum-dot light-emitting diodes (QLEDs) are greatly affected by the encapsulation. When encapsulated with ultraviolet curable resin, the efficiency is increased over time, a known phenomenon termed as positive aging which remains one of the unsolved mysteries. By developing a physical model and an analytical model, we identify that the efficiency improvement is mainly attributed to the suppression of hole leakage current that is resulted from the passivation of ZnMgO defects. When further encapsulated with desiccant, the positive aging effect vanishes. To fully take the advantage of positive aging, the desiccant is incorporated after the positive aging process is completed. With the new encapsulation method, the QLED exhibits a high external quantum efficiency of 20.19% and a half lifetime of 1,267 h at an initial luminance of 2,800 cd·m-2, which are improved by 1.4 and 6.0 folds, respectively, making it one of the best performing devices. Our work provides an in-depth and systematic understanding of the mechanism of positive aging and offers a practical encapsulation way for realizing efficient and stable QLEDs.

Electronic Supplementary Material

Download File(s)
12274_2020_3091_MOESM1_ESM.pdf (2.5 MB)

References

[1]
V. L. Colvin,; M. C. Schlamp,; A. P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354-357.
[2]
L. Qian,; Y. Zheng,; J. G. Xue,; P. H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543-548.
[3]
B. S. Mashford,; M. Stevenson,; Z. Popovic,; C. Hamilton,; Z. Q. Zhou,; C. Breen,; J. Steckel,; V. Bulovic,; M. Bawendi,; S. Coe-Sullivan, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407-412.
[4]
X. L. Dai,; Z. X. Zhang,; Y. Z. Jin,; Y. Niu,; H. J. Cao,; X. Y. Liang,; L. W. Chen,; J. P. Wang,; X. G. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96-99.
[5]
H. B. Shen,; Q. Gao,; Y. B. Zhang,; Y. Lin,; Q. L. Lin,; Z. H. Li,; L. Chen,; Z. P. Zeng,; X. G. Li,; Y. Jia, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192-197.
[6]
C. D. Pu,; X. L. Dai,; Y. F. Shu,; M. Y. Zhu,; Y. Z. Deng,; Y. Z. Jin,; X. G. Peng, Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.
[7]
Y. Yang,; Y. Zheng,; W. Cao,; A. Titov,; J. Hyvonen,; J. R. Manders,; J. Xue,; P. H. Holloway,; L. Qian, High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259-266.
[8]
X. L. Dai,; Y. Z. Deng,; X. G. Peng,; Y. Z. Jin, Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.
[9]
H. Chen,; T.-H Yeh,; J. He,; C. C. Zhang,; R. Abbel,; M. R. Hamblin,; Y. Y. Huang,; R. J. Lanzafame,; I. Stadler,; J. Celli, et al. Flexible quantum dot light-emitting devices for targeted photomedical applications. J. Soc. Inf. Display 2018, 26, 296-303.
[10]
H. Zhang,; S. M. Chen,; X. W. Sun, Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano 2018, 12, 697-704.
[11]
J. Lim,; Y. S. Park,; K. F. Wu,; H. J. Yun,; V. I. Klimov, Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645-6653.
[12]
Y. Z. Sun,; Q. Su,; H. Zhang,; F. Wang,; S. D. Zhang,; S. M. Chen, Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433-11442.
[13]
W. R. Cao,; C. Y. Xiang,; Y. X. Yang,; Q. Chen,; L. W. Chen,; X. L. Yan,; L. Qian, Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.
[14]
S. Chen,; W. R. Cao,; T. L. Liu,; S. W. Tsang,; Y. X. Yang,; X. L. Yan,; L. Qian, On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.
[15]
C. Y. Xiang,; L. J. Wu,; Z. Z. Lu,; M. L. Li,; Y. W. Wen,; Y. X. Yang,; W. Y. Liu,; T. Zhang,; W. R. Cao,; S. W. Tsang, et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.
[16]
H. Moon,; C. Lee,; W. Lee,; J. Kim,; H. Chae, Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.
[17]
K. P. Acharya,; A. Titov,; J. Hyvonen,; C. G. Wang,; J. Tokarz,; P. H. Holloway, High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017, 9, 14451-14457.
[18]
Q. Su,; Y. Z. Sun,; H. Zhang,; S. M. Chen, Origin of positive aging in quantum-dot light-emitting diodes. Adv. Sci. 2018, 5, 1800549.
[19]
J. S. Lewis,; M. S. Weaver, Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quant. Electron. 2004, 10, 45-57.
[20]
C. Y. Lee,; N. N. Mude,; R. Lampande,; K. J. Eun,; J. E. Yeom,; H. S. Choi,; S. H. Sohn,; J. M. Yoo,; J. H. Kwon, Efficient cadmium-free inverted red quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 2019, 11, 36917-36924.
[21]
W. C. Ding,; C. H. Chen,; L. J. Huang,; M. C. Kuo,; Y. P. Kuo,; P. Y. Chen,; H. H. Lu,; Y. H. Lin,; N. Tierce,; C. J. Bardeen, et al. P-108: Positive aging mechanisms for high-efficiency blue quantum dot light-emitting diodes. SID Symp. Dig. Tech. Pap. 2018, 49, 1622-1624.
[22]
K. Lee,; J. Yun,; S. Lee,; J. Song,; Y. Kim,; J. Kwak,; G. T. Kim, Understanding of the aging pattern in quantum dot light-emitting diodes using low-frequency noise. Nanoscale 2020, 12, 15888-15895.
[23]
Y. Z. Sun,; Y. B. Jiang,; H. R. Peng,; J. L. Wei,; S. D. Zhang,; S. M. Chen, Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer. Nanoscale 2017, 9, 8962-8969.
[24]
T. Cheng,; F. Z. Wang,; W. D. Sun,; Z. B. Wang,; J. Zhang,; B. G. You,; Y. Li,; T. Hayat,; A. Alsaed,; Z. Tan, High-performance blue quantum dot light-emitting diodes with balanced charge injection. Adv. Electron. Mater. 2019, 5, 1800794.
[25]
H. Zhou,; H. Alves,; D. M. Hofmann,; W. Kriegseis,; B. K. Meyer,; G. Kaczmarczyk,; A. Hoffmann, Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 2002, 80, 210-212.
[26]
M. Trunk,; V. Venkatachalapathy,; A. Galeckas,; A. Y. Kuznetsov, Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 2010, 97, 211901.
[27]
P. Y. Tang,; L. M. Xie,; X. Y. Xiong,; C. T. Wei,; W. C. Zhao,; M. Chen,; J. Y. Zhuang,; W. M. Su,; Z. Cui, Realizing 22.3% EQE and 7-fold lifetime enhancement in QLEDs via blending polymer TFB and cross-linkable small molecules for a solvent-resistant hole transport layer. ACS Appl. Mater. Interfaces 2020, 12, 13087-13095.
[28]
S. Lee,; C. Y. Han,; A. Hong,; J. Kim,; H. Yang,; B. J. Jung,; J. Kwak, Inverted quantum dot light-emitting diodes with defect-passivated ZnO as an electron transport layer. Semicond. Sci. Technol. 2019, 34, 085002.
[29]
C. Lee,; H. Moon,; J. Kim,; H. Kim,; H. Chae, Ethanedithiol treatment on zinc oxide films for highly efficient quantum dot light-emitting diodes by reducing exciton quenching. J. Opt. Soc. Am. B 2020, 37, 304-310.
[30]
D. Kim,; S. Yoon,; Y. Jeong,; Y. Kim,; B. Kim,; M. Hong, Role of adsorbed H2O on transfer characteristics of solution-processed zinc tin oxide thin-film transistors. Appl. Phys. Express 2012, 5, 021101.
[31]
J. K. Jeong,; H. W. Yang,; J. H. Jeong,; Y. G. Mo,; H. D. Kim, Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 123508.
[32]
Y. B. Li,; F. D. Valle,; M. Simonnet,; I. Yamada,; J. J. Delaunay, Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 2009, 94, 023110.
[33]
J. S. Park,; J. K. Jeong,; H. J. Chung,; Y. G. Mo,; H. D. Kim, Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104.
[34]
Y. Z. Deng,; X. Lin,; W. Fang,; D. W. Di,; L. J. Wang,; R. H. Friend,; X. G. Peng,; Y. Z. Jin, Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309.
Nano Research
Pages 320-327
Cite this article:
Chen Z, Su Q, Qin Z, et al. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Research, 2021, 14(1): 320-327. https://doi.org/10.1007/s12274-020-3091-3
Topics:

957

Views

54

Crossref

0

Web of Science

51

Scopus

6

CSCD

Altmetrics

Received: 13 July 2020
Revised: 04 September 2020
Accepted: 05 September 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return