AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Graphene quantum dots: From efficient preparation to safe renal excretion

Caroline Hadad1,2,§José Miguel González-Domínguez1,3,§Silvia Armelloni4,Deborah Mattinzoli4,Masami Ikehata4Akcan Istif1Adrian Ostric1Francesco Cellesi5Carlo Maria Alfieri4,6,7Piergiorgio Messa4,6,7Belén Ballesteros8Tatiana Da Ros1( )
Centre of Excellence for Nanostructured Materials (CENMAT), INSTM, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
Current address: Laboratoire LG2A - CNRS UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu - UFR des Sciences, 80039 Amiens, France
Instituto de Carboquímica (CSIC), C/Miguel Luesma Castán 4, E-50018 Zaragoza, Spain
Renal Research Laboratory-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy
Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta" , Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della commenda 4, 20122 Milan, Italy
Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain

§ Caroline Hadad and José Miguel González-Domínguez contributed equally to this work.

Silvia Armelloni and Deborah Mattinzoli contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Carbon nanomaterials offer excellent prospects as therapeutic agents, and among them, graphene quantum dots (GQDs) have gained considerable interest thanks to their aqueous solubility and intrinsic fluorescence, which enable their possible use in theranostic approaches, if their biocompatibility and favorable pharmacokinetic are confirmed. We prepared ultra-small GQDs using an alternative, reproducible, top-down synthesis starting from graphene oxide with a nearly 100% conversion. The materials were tested to assess their safety, demonstrating good biocompatibility and ability in passing the ultrafiltration barrier using an in vitro model. This leads to renal excretion without affecting the kidneys. Moreover, we studied the GQDs in vivo biodistribution confirming their efficient renal clearance, and we demonstrated that the internalization mechanism into podocytes is caveolae-mediated. Therefore, considering the reported characteristics, it appears possible to vehiculate compounds to kidneys by means of GQDs, overcoming problems related to lysosomal degradation.

Electronic Supplementary Material

Download File(s)
12274_2020_3096_MOESM1_ESM.pdf (2.1 MB)

References

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
D. Chen,; H. B. Feng,; J. H. Li, Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027-6053.
[3]
G. Reina,; J. M. González-Domínguez,; A. Criado,; E. Vázquez,; M. Prato,; A. Bianco, Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 2017, 46, 4400-4416.
[4]
X. M. Sun,; Z. Liu,; K. Welsher,; J. T. Robinson,; A. Goodwin,; S. Zaric,; H. J. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.
[5]
V. Georgakilas,; J. A. Perman,; J. Tucek,; R. Zboril, Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744-4822.
[6]
P. Wick,; A. E. Louw-Gaume,; M. Kucki,; H. F. Krug,; K. Kostarelos,; B. Fadeel,; K. Dawson,; A. Salvati,; E. Vázquez,; L. Ballerini, et al. Classification framework for graphene-based materials. Angew. Chem., Int. Ed. 2014, 53, 7714-7718.
[7]
S. H. Zhou,; H. B. Xu,; W. Gan,; Q. H. Yuan, Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications. RSC Adv. 2016, 6, 110775-110788.
[8]
P. Das,; S. Ganguly,; S. Banerjee,; N. C. Das, Graphene based emergent nanolights: A short review on the synthesis, properties and application. Res. Chem. Intermed. 2019, 45, 3823-3853.
[9]
J. Peng,; W. Gao,; B. K. Gupta,; Z. Liu,; R. Romero-Aburto,; L. H. Ge,; L. Song,; L. B. Alemany,; X. B. Zhan,; G. H. Gao, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844-849.
[10]
E. Blanco,; G. Blanco,; J. M. Gonzalez-Leal,; M. C. Barrera,; M. Domínguez,; M. Ramirez-del-Solar, Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence. J. Nanopart. Res. 2015, 17, 214.
[11]
H. B. Xu,; S. H. Zhou,; L. L. Xiao,; Q. H. Yuan,; W. Gan, Time- efficient syntheses of nitrogen and sulfur co-doped graphene quantum dots with tunable luminescence and their sensing applications. RSC Adv. 2016, 6, 36554-36560.
[12]
X. M. Li,; M. C. Rui,; J. Z. Song,; Z. H. Shen,; H. B. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929-4947.
[13]
Y. Wang,; Z. H. Li,; J. H. Li,; Y. H. Lin, Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205-212.
[14]
S. J. Wang,; I. S. Cole,; Q. Li, The toxicity of graphene quantum dots. RSC Adv. 2016, 6, 89867-89878.
[15]
Y. Chong,; Y. F. Ma,; H. Shen,; X. L. Tu,; X. Zhou,; J. Y. Xu,; J. W. Dai,; S. J. Fan,; Z. J. Zhang, The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 2014, 35, 5041-5048.
[16]
F. D. de Menezes,; S. R. R. dos Reis,; S. R. Pinto,; F. L. Portilho,; F. Do Vale Chaves e Mello,; E. Helal-Neto,; A. O. da Silva de Barros,; L. M. Rebêlo Alencar,; A. S. de Menezes,; C. C. dos Santos, et al. Graphene quantum dots unraveling: Green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Mater. Sci. Eng. C 2019, 102, 405-414.
[17]
P. Roy,; A. P. Periasamy,; C. Y. Lin,; G. M. Her,; W. J. Chiu,; C. L. Li,; C. L. Shu,; C. C. Huang,; C. T. Liang,; H. T. Chang, Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale 2015, 7, 2504-2510.
[18]
J. H. Zhang,; T. Sun,; A. P. Niu,; Y. M. Tang,; S. Deng,; W. Luo,; Q. Xu,; D. P. Wei,; D. S. Pei, Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish. Biomaterials 2017, 133, 49-59.
[19]
Z. G. Wang,; R. Zhou,; D. Jiang,; J. E. Song,; Q. Xu,; J. Si,; Y. P. Chen,; X. Zhou,; L. Gan,; J. Z. Li, et al. Toxicity of graphene quantum dots in zebrafish embryo. Biomed. Environ. Sci. 2015, 28, 341-351.
[20]
H. Song,; Y. H. Wang,; J. Wang,; G. Q. Wang,; J. H. He,; H. Y. Wei,; S. Z. Luo, Preparation and biodistribution of 131I-labeled graphene quantum dots. J. Radioanal. Nuclear Chem. 2018, 316, 685-690.
[21]
A. Greka,; P. Mundel, Cell biology and pathology of podocytes. Annu. Rev. Physiol. 2012, 74, 299-323.
[22]
M. Li,; A. Corbelli,; S. Watanabe,; S. Armelloni,; M. Ikehata,; V. Parazzi,; C. Pignatari,; L. Giardino,; D. Mattinzoli,; L. Lazzari, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur. J. Pharm. Sci. 2016, 86, 1-12.
[23]
T. Benzing, Signaling at the slit diaphragm. J. Am. Soc. Nephrol. 2004, 15, 1382-1391.
[24]
D. Drenckhahn,; R. P. Franke, Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab. Invest. 1988, 59, 673-682.
[25]
H. Pavenstadt,; W. Kriz,; M. Kretzler, Cell biology of the glomerular podocyte. Physiol. Rev. 2003, 83, 253-307.
[26]
A. Ruggiero,; C. H. Villa,; E. Bander,; D. A. Rey,; M. Bergkvist,; C. A. Batt,; K. Manova-Todorova,; W. M. Deen,; D. A. Scheinberg,; M. R. McDevitt, Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2010, 107, 12369-12374.
[27]
C. Colombo,; M. Li,; S. Watanabe,; P. Messa,; A. Edefonti,; G. Montini,; D. Moscatelli,; M. P. Rastaldi,; F. Cellesi, Polymer nanoparticle engineering for podocyte repair: From in vitro models to new nanotherapeutics in kidney diseases. ACS Omega 2017, 2, 599-610.
[28]
W. S. Hummers, Jr.; R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
[29]
K. E. Lindström,; E. Johnsson,; B. Haraldsson, Glomerular charge selectivity for proteins larger than serum albumin as revealed by lactate dehydrogenase isoforms. Acta Physiol. Scand. 1998, 162, 481-488.
[30]
J. Rejman,; V. Oberle,; I. S. Zuhorn,; D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159-169.
[31]
N. Nurunnabi,; Z. Khatun,; K. M. Huh,; S. Y. Park,; D. Y. Lee,; K. J. Cho,; Y. K. Lee, In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858-6867.
[32]
X. L. Huang,; F. Zhang,; L. Zhu,; K. Y. Choi,; N. Guo,; J. K. Guo,; P. Tackett,; G. Anilkumar,; Q. Liu,; H. S. Quan, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684-5693.
[33]
H. Q. Tao,; K. Yang,; Z. Ma,; J. M. Wan,; Y. J. Zhang,; Z. H. Kang,; Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012, 8, 281-290.
[34]
D. Kim,; J. M. Yoo,; H. Hwang,; J. Lee,; S. H. Lee,; S. P. Yun,; M. J. Park,; M. Lee,; S. Choi,; S. H. Kwon, et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson's disease. Nat. Nanotechnol. 2018, 13, 812-818.
[35]
Y. Qin,; Z. W. Zhou,; S. T. Pan,; Z. X. He,; X. Zhang,; J. X. Qiu,; W. Duan,; T. X. Yang,; S. F. Zhou, Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen- activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology 2015, 327, 62-76.
[36]
C. Y. Wu,; C. Wang,; T. Han,; X. J. Zhou,; S. W. Guo,; J. Y. Zhang, Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv. Healthc. Mater. 2013, 2, 1613-1619.
[37]
J. Kim,; S. H. Song,; Y. Jin,; H. J. Park,; H. Yoon,; S. Jeon,; S. W. Cho, Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells. Nanoscale 2016, 8, 8512-8519.
[38]
S. J. Zhu,; N. Zhou,; Z. Y. Hao,; S. Maharjan,; X. H. Zhao,; Y. B. Song,; B. Sun,; K. Zhang,; J. H. Zhang,; H. C. Sun, et al. Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv. 2015, 5, 39399-39403.
[39]
X. J. Wang,; X. Sun,; J. Lao,; H. He,; T. T. Cheng,; M. Q. Wang,; S. J. Wang,; F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloid Surf. B 2014, 122, 638-644.
[40]
Y. C. Xie,; B. Wan,; Y. Yang,; X. J. Cui,; Y. Xin,; L. H. Guo, Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups. J. Environ. Sci. 2019, 77, 198-209.
[41]
N. Nurunnabi,; Z. Khatun,; M. Nafiujjaman,; D. Y. Lee,; Y. Lee, Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl. Mater. Interfaces 2013, 5, 8246-8253.
[42]
D. A. Jasim,; S. Murphy,; L. Newman,; A. Mironov,; E. Prestat,; J. McCaffrey,; C. Ménard-Moyon,; A. F. Rodrigues,; A. Bianco,; S. Haigh, et al. The effects of extensive glomerular filtration of thin graphene oxide sheets on kidney physiology. ACS Nano 2016, 10, 10753-10767.
Nano Research
Pages 674-683
Cite this article:
Hadad C, González-Domínguez JM, Armelloni S, et al. Graphene quantum dots: From efficient preparation to safe renal excretion. Nano Research, 2021, 14(3): 674-683. https://doi.org/10.1007/s12274-020-3096-y
Topics:

1014

Views

38

Downloads

25

Crossref

0

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 23 June 2020
Revised: 03 September 2020
Accepted: 06 September 2020
Published: 01 March 2021
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return