AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization

Mingxing Liang2,3,§Xueting Bai1,§Fei Yu1( )Jie Ma2,3,4( )
College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

§ Mingxing Liang and Xueting Bai contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Capacitive deionization (CDI) technology has been considered a promising desalination technique, especially for brackish water, because of its relatively low energy consumption, facile operation, and easy regeneration of electrodes. However, the desalination capacity, cost, fabrication method, electrochemical stability, and environmental unfriendliness of the electrodes have restricted the practical application of the CDI technique. Herein, we reported the one-step in situ preparation of nitrogen-doped and carbon-decorated MXene-derived TiO2 (termed N-TiO2−x/C) through the confinement-growth strategy. The small particle size (~ 25 nm) and uniform distribution of a peanut-like N-TiO2−x/C material could be ascribed to the confined growth space created by the nanoporous structure of melamine foam. The defects produced by N doping provide an enhanced electrical conductivity and more adsorption sites, while wrapping with a carbon shell layer increases the conductivity and offers protection for N-TiO2−x to achieve an excellent electrochemical stability. The prepared N-TiO2−x/C electrode is hydrophilic due to the abundant oxygen-containing functional groups (e.g., C-O, N-Ti-O, -NOx, and -OH) and exhibits a high salt removal capacity (33.4 mg·g−1), desalination rate (1.5 mg·g−1·min−1), and remarkable cycling stability (without declining after 100 cycles), which might be ascribed to the synergistic effects of the short ion diffusion path, more active adsorption sites, enhanced conductivity, pseudocapacitive behavior, and protection of the carbon shell layer. This work provides a confined-growth strategy to develop MXene-derived oxide electrodes for electrochemical desalination.

Electronic Supplementary Material

Download File(s)
12274_2020_3097_MOESM1_ESM.pdf (1.2 MB)

References

[1]
K. Silambarasan,; J. Joseph, Redox-polysilsesquioxane film as a new chloride storage electrode for desalination batteries. Energy Technol. 2019, 7, 1800601.
[2]
M. E. Suss,; S. Porada,; X. Sun,; P. M. Biesheuvel,; J. Yoon,; V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it? Energy Environ. Sci. 2015, 8, 2296-2319.
[3]
S. J. Seo,; H. Jeon,; J. K. Lee,; G. Y. Kim,; D. Park,; H. Nojima,; J. Lee,; S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 2010, 44, 2267-2275.
[4]
L. Legrand,; O. Schaetzle,; R. C. F. de Kler,; H. V. M. Hamelers, Solvent-free CO2 capture using membrane capacitive deionization. Environ. Sci. Technol. 2018, 52, 9478-9485.
[5]
F. Yu,; L. Wang,; Y. Wang,; X. J. Shen,; Y. J. Cheng,; J. Ma, Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 2019, 7, 15999-16027.
[6]
S. Nadakatti,; M. Tendulkar,; M. Kadam, Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination 2011, 268, 182-188.
[7]
P. H. Zhang,; P. A. Fritz,; K. Schroën,; H. W. Duan,; R. M. Boom,; M. B. Chan-Park, Zwitterionic polymer modified porous carbon for high-performance and antifouling capacitive desalination. ACS Appl. Mater. Interfaces 2018, 10, 33564-33573.
[8]
H. Wang,; T. T. Yan,; P. Y. Liu,; G. R. Chen,; L. Y. Shi,; J. P. Zhang,; Q. D. Zhong,; D. S. Zhang, In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. J. Mater. Chem. A 2016, 4, 4908-4919.
[9]
Z. Wang,; T. T. Yan,; G. R. Chen,; L. Y. Shi,; D. S. Zhang, High salt removal capacity of metal-organic gel derived porous carbon for capacitive deionization. ACS Sustainable Chem. Eng. 2017, 5, 11637-11644.
[10]
Z. S. Wu,; G. M. Zhou,; L. C. Yin,; W. C. Ren,; F. Li,; H. M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.
[11]
M. H. Ryu,; K. N. Jung,; K. H. Shin,; K. S. Han,; S. Yoon, High performance N-doped mesoporous carbon decorated TiO2 nanofibers as anode materials for lithium-ion batteries. J. Phys. Chem. C 2013, 117, 8092-8098.
[12]
J. F. Ni,; S. D. Fu,; C. Wu,; J. Maier,; Y. Yu,; L. Li, Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259-2265.
[13]
Y. Xu,; E. M. Lotfabad,; H. L. Wang,; B. Farbod,; Z. W. Xu,; A. Kohandehghan,; D. Mitlin, Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973-8975.
[14]
H. Xiong,; M. D. Slater,; M. Balasubramanian,; C. S. Johnson,; T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560-2565.
[15]
K. T. Kim,; G. Ali,; K. Y. Chung,; C. S. Yoon,; H. Yashiro,; Y. K. Sun,; J. Lu,; K. Amine,; S. T. Myung, Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416-422.
[16]
H. N. He,; H. Y. Wang,; D. Sun,; M. H. Shao,; X. B. Huang,; Y. G. Tang, N-doped rutile TiO2/C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochim. Acta 2017, 236, 43-52.
[17]
D. W. Su,; S. X. Dou,; G. X. Wang, Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022-6029.
[18]
Y. Wu,; X. W. Liu,; Z. Z. Yang,; L. Gu,; Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522-3529.
[19]
A. G. El-Deen,; J. H. Choi,; C. S. Kim,; K. A. Khalil,; A. A. Almajid,; N. A. M. Barakat, TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 2015, 361, 53-64.
[20]
L. M. Wu,; D. Buchholz,; D. Bresser,; L. G. Chagas,; S. Passerini, Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 2014, 251, 379-385.
[21]
K. J. Wei,; Y. Wang,; W. Q. Han,; J. S. Li,; X. Y. Sun,; J. Y. Shen,; L. J. Wang, Fabrication and characterization of TiO2-NTs based hollow carbon fibers/carbon film composite electrode with NiOx decorated for capacitive application. J. Power Sources 2016, 318, 57-65.
[22]
S. N. Liu,; Z. Y. Cai,; J. Zhou,; A. Q. Pan,; S. Q. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 2016, 4, 18278-18283.
[23]
O. Game,; T. Kumari,; U. Singh,; V. Aravindan,; S. Madhavi,; S. B. Ogale, (001) faceted mesoporous anatase TiO2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn2O4. Energy Storage Mater. 2016, 3, 106-112.
[24]
Y. L. Xing,; S. B. Wang,; B. Z. Fang,; G. Song,; D. P. Wilkinson,; S. C. Zhang, N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 2018, 385, 10-17.
[25]
L. M. Chang,; X. Y. Duan,; W. Liu, Preparation and electrosorption desalination performance of activated carbon electrode with titania. Desalination 2011, 270, 285-290.
[26]
J. H. Feng,; S. Xiong,; Y. Wang, Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Sep. Purif. Technol. 2019, 213, 70-77.
[27]
J. G. Kim,; D. Q. Shi,; K. J. Kong,; Y. U. Heo,; J. H. Kim,; M. R. Jo,; Y. C. Lee,; Y. M. Kang,; S. X. Dou, Structurally and electronically designed TiO2Nx nanofibers for lithium rechargeable batteries. ACS Appl. Mater. Interfaces 2013, 5, 691-696.
[28]
M. Ding,; S. Fan,; S. Z. Huang,; M. E. Pam,; L. Guo,; Y. M. Shi,; H. Y. Yang, Tunable pseudocapacitive behavior in metal-organic framework-derived TiO2@porous carbon enabling high-performance membrane capacitive deionization. ACS Appl. Energy Mater. 2019, 2, 1812-1822.
[29]
B. Anasori,; M. R. Lukatskaya,; Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
[30]
J. Yan,; C. E. Ren,; K. Maleski,; C. B. Hatter,; B. Anasori,; P. Urbankowski,; A. Sarycheva,; Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.
[31]
Y. Z. Fang,; R. Hu,; B. Y. Liu,; Y. Y. Zhang,; K. Zhu,; J. Yan,; K. Ye,; K. Cheng,; G. L. Wang,; D. X. Cao, MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 2019, 7, 5363-5372.
[32]
X. L. Zhang,; J. F. Li,; J. B. Li,; L. Han,; T. Lu,; X. J. Zhang,; G. Zhu,; L. K. Pan, 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 2020, 385, 123394.
[33]
G. D. Zou,; J. X. Guo,; Q. M. Peng,; A. G. Zhou,; Q. R. Zhang,; B. Z. Liu, Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 2016, 4, 489-499.
[34]
S. Porada,; R. Zhao,; A. van der Wal,; V. Presser,; P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388-1442.
[35]
D. H. Wang,; L. Jia,; X. L. Wu,; L. Q. Lu,; A. W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 2012, 4, 576-584.
[36]
H. L. Cui,; W. Zhao,; C. Y. Yang,; H. Yin,; T. Q. Lin,; Y. F. Shan,; Y. A. Xie,; H. Gu,; F. Q. Huang, Black TiO2 nanotube arrays for high- efficiency photoelectrochemical water-splitting. J. Mater. Chem. A 2014, 2, 8612-8616.
[37]
W. Zhang,; D. W. Liu, Nitrogen-treated hierarchical macro-/mesoporous TiO2 used as anode materials for lithium ion batteries with high performance at elevated temperatures. Electrochim. Acta 2015, 156, 53-59.
[38]
J. Zheng,; Y. S. Liu,; G. B. Ji,; P. Zhang,; X. Z. Cao,; B. Y. Wang,; C. H. Zhang,; X. G. Zhou,; Y. Zhu,; D. N. Shi, Hydrogenated oxygen- deficient blue anatase as anode for high-performance lithium batteries. ACS Appl. Mater. Interfaces 2015, 7, 23431-23438.
[39]
F. C. Zheng,; Y. Yang,; Q. W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.
[40]
V. Augustyn,; J. Come,; M. A. Lowe,; J. W. Kim,; P. L. Taberna,; S. H. Tolbert,; H. D. Tolbert,; P. Simon,; B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
[41]
J. Zhang,; D. W. Wang,; W. Lv,; S. W. Zhang,; Q. H. Liang,; D. Q. Zheng,; F. Y. Kang,; Q. H. Yang, Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 2017, 10, 370-376.
[42]
H. B. Li,; Y. L. Ma,; R. Niu, Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes. Sep. Purif. Technol. 2016, 171, 93-100.
[43]
J. W Lee,; H. I. Kim,; H. J. Kim,; S. G. Park, Electrosorption behavior of TiO2/activated carbon composite for capacitive deionization. Appl. Chem. Eng. 2010, 21, 265-271.
[44]
A. G. El-Deen,; J. H. Choi,; K. A. Khalil,; A. A. Almajid,; N. A. M. Barakat, A TiO2 nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water. RSC Adv. 2014, 4, 64634-64642.
[45]
T. Y. Liu,; J. Serrano,; J. Elliott,; X. Z. Yang,; W. Cathcart,; Z. X. Wang,; Z. He,; G. L. Liu, Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Sci. Adv. 2020, 6, eaaz0906.
[46]
B. Li,; T. Y. Zheng,; S. J. Ran,; M. Z. Sun,; J. Shang,; H. B. Hu,; P. H. Lee,; S. T. Boles, Performance recovery in degraded carbon- based electrodes for capacitive deionization. Environ. Sci. Technol. 2020, 54, 1848-1856.
Nano Research
Pages 684-691
Cite this article:
Liang M, Bai X, Yu F, et al. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Research, 2021, 14(3): 684-691. https://doi.org/10.1007/s12274-020-3097-x
Topics:

874

Views

37

Crossref

0

Web of Science

37

Scopus

3

CSCD

Altmetrics

Received: 14 July 2020
Revised: 03 September 2020
Accepted: 06 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return