AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single crystalline CeO2 nanotubes

Fangxian Cao1Mingkai Zhang1Kaili Yang1Zhimin Tian1Jing Li2Yongquan Qu1,3( )
Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

Abstract

Here, we report a facile synthetic methodology to prepare uniform single crystalline CeO2 nanotubes through a hydrothermal transformation of CeO2 nanorods in aqueous Ce(NO3)3 solution. A chemically driven etching-dissolution-deposition mechanism is proposed, involving the surface Ce3+ hydrolysis and dissolution at tips of nanorods and subsequent redeposition and crystallization on the outer sides of nanorods. Compared to CeO2 nanorods, CeO2 nanotubes exhibited the richer structural defects, higher reducibility and larger surface area, leading to a higher haloperoxidase-like activity.

Electronic Supplementary Material

Download File(s)
12274_2020_3103_MOESM1_ESM.pdf (1.7 MB)

References

[1]
T. Montini,; M. Melchionna,; M. Monai,; P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987-6041.
[2]
Y. Y. Ma,; W. Gao,; Z. Y. Zhang,; S. Zhang,; Z. M. Tian,; Y. X. Liu,; J. C. Ho,; Y. Q. Qu, Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018, 73, 1-36.
[3]
L. J. Lei,; Y. H. Wang,; Z. X. Zhang,; J. H. An,; F. Wang, Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts. ACS Catal. 2020, 10, 8788-8814.
[4]
W. T. Yang,; X. Wang,; S. Y. Song,; H. J. Zhang, Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts. Chem 2019, 5, 1743-1774.
[5]
H. X. Mai,; L. D. Sun,; Y. W. Zhang,; R. Si,; W. Feng,; H. P. Zhang,; H. C. Liu,; C. H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380-24385.
[6]
C. S. Pan,; D. S. Zhang,; L. Y. Shi,; J. H. Fang, Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. Eur. J. Inorg. Chem. 2008, 2008, 2429-2436.
[7]
T. Yu,; B. Lim,; Y. N. Xia, Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem. 2010, 122, 4586-4589.
[8]
Z. X. Li,; J. Z. Zhang,; M. M. Li,; X. F. Xing,; Q. Y. Zhang, Highly ordered macroporous-mesoporous Ce0.4Zr0.6O2 as dual-functional material in a polysulfide polymer. Nano Res. 2018, 11, 80-88.
[9]
K. Wu,; X. Y. Wang,; L. L. Guo,; Y. J. Xu,; L. Zhou,; Z. Y. Lyu,; K. Y. Liu,; R. Si,; Y. W. Zhang,; L. D. Sun,; C. H. Yan, Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044-2055.
[10]
Z. M. Wang,; R. B. Yu, Hollow micro/nanostructured ceria-based materials: Synthetic strategies and versatile applications. Adv. Mater. 2019, 31, 1800592.
[11]
L. González-Rovira,; J. M. Sánchez-Amaya,; M. López-Haro,; E. del Rio,; A. B. Hungría,; P. Midgley,; J. J. Calvino,; S. Bernal,; F. J. Botana, Single-step process to prepare CeO2 nanotubes with improved catalytic activity. Nano Lett. 2009, 9, 1395-1400.
[12]
G. Z. Chen,; C. X. Xu,; X. Y. Song,; W. Zhao,; Y. Ding,; S. X. Sun, Interface reaction route to two different kinds of CeO2 nanotubes. Inorg. Chem. 2008, 47, 723-728.
[13]
R. O. Fuentes,; L. M. Acuña,; M. G. Zimicz,; D. G. Lamas,; J. G. Sacanell,; A. G. Leyva,; R. T. Baker, Formation and structural properties of Ce-Zr mixed oxide nanotubes. Chem. Mater. 2008, 20, 7356-7363.
[14]
C. C. Tang,; Y. Bando,; B. D. Liu,; D. Golberg, Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Adv. Mater. 2005, 17, 3005-3009.
[15]
K. B. Zhou,; Z. Q. Yang,; S. Yang, Highly reducible CeO2 nanotubes. Chem. Mater. 2007, 19, 1215-1217.
[16]
W. Q. Han,; L. J. Wu,; Y. M. Zhu, Formation and oxidation state of CeO2-x nanotubes. J. Am. Chem. Soc. 2005, 127, 12814-12815.
[17]
K. Herget,; P. Hubach,; S. Pusch,; P. Deglmann,; H. Götz,; T. E. Gorelik,; I. A. Gural’skiy,; F. Pfitzner,; T. Link,; S. Schenk, et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 2017, 29, 1603823.
[18]
M. Molinari,; S. C. Parker,; D. C. Sayle,; M. S. Islam, Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria. J. Phys. Chem. C 2012, 116, 7073-7082.
[19]
D. R. Mullins,; P. M. Albrecht,; T. L. Chen,; F. C. Calaza,; M. D. Biegalski,; H. M. Christen,; S. H. Overbury, Water dissociation on CeO2(100) and CeO2(111) thin films. J. Phys. Chem. C 2012, 116, 19419-19428.
[20]
Y. Long,; J. Li,; L. L. Wu,; Q. S. Wang,; Y. Liu,; X. Wang,; S. Y. Song,; H. J. Zhang, Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Res. 2019, 12, 869-875.
[21]
P. L. Chen,; I. W. Chen, Reactive cerium (IV) oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc. 1993, 76, 1577-1583.
[22]
M. Hirano,; E. Kato, Hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders. J. Am. Ceram. Soc. 1999, 82, 786-788.
[23]
M. Tamura,; A. Satsuma.; K. I. Shimizu, CeO2-catalyzed nitrile hydration to amide: Reaction mechanism and active sites. Catal. Sci. Technol. 2013, 3, 1386-1393.
[24]
T. V. Plakhova,; A. Y. Romanchuk,; S. N. Yakunin,; T. Dumas,; S. Demir,; S. A. Wang,; S. G. Minasian,; D. K. Shuh,; T. Tyliszczak,; A. A. Shiryaev, et al. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling. J. Phys. Chem. C 2016, 120, 22615-22626.
[25]
C. L. Corkhill,; D. J. Bailey,; F. Y. Tocino,; M. C. Stennett,; J. A. Miller,; J. L. Provis,; K. P. Travis,; N. C. Hyatt, Role of microstructure and surface defects on the dissolution kinetics of CeO2, a UO2 fuel analogue. ACS Appl. Mater. Interfaces 2016, 8, 10562-10571.
[26]
M. Nolan,; S. C. Parker,; G. W. Watson, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223-232.
[27]
C. J. Jia,; L. D. Sun,; Z. G. Yan,; L. P. You,; F. Luo,; X. D. Han,; Y. C. Pang,; Z. Zhang,; C. H. Yan, Single-crystalline iron oxide nanotubes. Angew. Chem. 2005, 117, 4402-4407.
[28]
J. Feng,; Y. D. Yin, Self-templating approaches to hollow nanostructures. Adv. Mater. 2019, 31, 1802349.
[29]
Q. Wu,; F. Zhang,; P. Xiao,; H. S. Tao,; X. Z. Wang,; Z. Hu,; Y. N. Lü, Great influence of anions for controllable synthesis of CeO2 nanostructures: From nanorods to nanocubes. J. Phys. Chem. C 2008, 112, 17076-17080.
[30]
Z. M. Tian,; J. Li,; Z. Y. Zhang,; W. Gao,; X. M. Zhou,; Y. Q. Qu, Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 2015, 59, 116-124.
Nano Research
Pages 715-719
Cite this article:
Cao F, Zhang M, Yang K, et al. Single crystalline CeO2 nanotubes. Nano Research, 2021, 14(3): 715-719. https://doi.org/10.1007/s12274-020-3103-3
Topics:

903

Views

20

Crossref

0

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 05 August 2020
Revised: 07 September 2020
Accepted: 08 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return