AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands

Zhengjian Xu1,2Man He1( )Yuming Zhou1( )Shuangxi Nie2Yongjuan Wang1Yao Huo1Yifan Kang1Ruili Wang1Ran Xu1Hao Peng1Xi Chen1
Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
Show Author Information

Graphical Abstract

Abstract

It is essential to manufacture microwave absorbers with strong absorption as well as tunable absorption bands at a low filler content. However, it remains challenging for pure biomass material to reach this goal without loading other components. MoSe2, as a transition metal chalcogenide with semiconductor properties, has emerged as a potential microwave absorber filler. Herein, bacterial cellulose (BC)-derived carbon nanofibers/MoSe2 nanocomposite was fabricated and phosphoric acid was used to dope phosphorus in BC, in which MoSe2 microspheres were dropped on the BC network like a dew-covered spider web. This unique network structure enhances conductive loss and multiple reflections of the incident wave. The collocation of BC and MoSe2 is helpful to impedance match and introduces interfacial/dipolar polarization loss; moreover, the P-doping of BC helps to tune the absorption bands. Overall, the optimal reflection loss of undoped one reaches −53.33 dB with only 20 wt.% filler content, whose main absorption peaks focus on X-band. Interestingly, after the P-doping of BC, the main absorption peaks move to Ku-band and the optimal reflection loss gets stronger (−66.84 dB) with the same filler loading. Strong absorption and tunable absorption bands can be realized, and thus wide frequency range is covered. This work is expected to enlighten future exploration of biomass carbon materials on high-performance microwave absorption materials.

Electronic Supplementary Material

Download File(s)
12274_2020_3107_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Q. Li,; Z. Zhang,; L. P. Qi,; Q. L. Liao,; Z. Kang,; Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.
[2]
X. L. Li,; X. W. Yin,; C. Q. Song,; M. K. Han,; H. L. Xu,; W. Y. Duan,; L. F. Cheng,; L. T. Zhang, Self-assembly core-shell graphene- bridged hollow mxenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.
[3]
R. L. Wang,; M. He,; Y. M. Zhou,; S. X. Nie,; Y. J. Wang,; W. Q. Liu,; Q. He,; W. T. Wu,; X. H. Bu,; X. M. Yang, Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 2020, 156, 378-388.
[4]
M. S. Cao,; X. X. Wang,; M. Zhang,; W. Q. Cao,; X. Y. Fang,; J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.
[5]
J. C. Shu,; X. Y. Yang,; X. R. Zhang,; X. Y. Huang,; M. S. Cao,; L. Li,; H. J. Yang,; W. Q. Cao, Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157-171.
[6]
M. S. Cao,; Y. Z. Cai,; P. He,; J. C. Shu,; W. Q. Cao,; J. Yuan, 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265-1302.
[7]
X. Q. Cui,; X. H. Liang,; W. Liu,; W. H. Gu,; G. B. Ji,; Y. W. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589.
[8]
B. Quan,; W. H. Shi,; S. J. H. Ong,; X. C. Lu,; P. L. Wang,; G. B. Ji,; Y. F. Guo,; L. R. Zheng,; Z. J. Xu, Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.
[9]
H. Q. Zhao,; Y. Cheng,; W. Liu,; L. J. Yang,; B. S. Zhang,; L. P. Wang,; G. B. Ji,; Z. J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.
[10]
X. J. Lin,; Z. M. Wu,; C. Y. Zhang,; S. J. Liu,; S. X. Nie, Enzymatic pulping of lignocellulosic biomass. Ind. Crops Prod. 2018, 120, 16-24.
[11]
C. Y. Zhang,; X. J. Lin,; N. Zhang,; Y. X. Lu,; Z. M. Wu,; G. L. Liu,; S. X. Nie, Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 2019, 66, 104126.
[12]
X. J. Yue,; T. Zhang,; D. Y. Yang,; F. X. Qiu,; Z. D. Li,; Y. Zhu,; H. Q. Yu, Oil removal from oily water by a low-cost and durable flexible membrane made of layered double hydroxide nanosheet on cellulose support. J. Clean. Prod. 2018, 180, 307-315.
[13]
T. Zhang,; D. S. Yuan,; Q. Guo,; F. X. Qiu,; D. Y. Yang,; Z. P. Ou, Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green tofu. Food Bioprod. Process. 2019, 114, 154-162.
[14]
H. Q. Zhao,; Y. Cheng,; J. N. Ma,; Y. N. Zhang,; G. B. Ji,; Y. W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 2018, 339, 432-441.
[15]
J. Y. Fang,; Y. S. Shang,; Z. Chen,; W. Wei,; Y. Hu,; X. G. Yue,; Z. H. Jiang, Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. J. Mater. Chem. C 2017, 5, 4695-4705.
[16]
Z. C. Wu,; K. Tian,; T. Huang,; W. Hu,; F. F. Xie,; J. J. Wang,; M. X. Su,; L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 11108-11115.
[17]
X. X. Sun,; M. L. Yang,; S. Yang,; S. S. Wang,; W. L. Yin,; R. C. Che,; Y. B. Li, Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.
[18]
Y. H. Zhang,; N. K. Hao,; X. J. Lin,; S. X. Nie, Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydr. Polym. 2020, 234, 115888.
[19]
L. L. Liang,; Z. Q. Zhang,; F. Song,; W. Zhang,; H. Li,; J. J. Gu,; Q. L. Liu,; D. Zhang, Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon 2020, 162, 283-291.
[20]
H. L. Luo,; Y. Zhang,; Z. W. Yang,; G. Y. Xiong,; Y. Z. Wan, Constructing superior carbon-nanofiber-based composite microwave absorbers by engineering dispersion and loading of Fe3O4 nanoparticles on three-dimensional carbon nanofibers derived from bacterial cellulose. Mater. Chem. Phys. 2017, 201, 130-138.
[21]
Y. Ren,; S. R. Li,; B. Dai,; X. H. Huang, Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose. Appl. Surf. Sci. 2014, 311, 1-4.
[22]
S. Li,; Z. C. Zhao,; D. F. Yu,; J. Z. Zhao,; Y. P. Su,; Y. Liu,; Y. H. Lin,; W. S. Liu,; H. Xu,; Z. T. Zhang, Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy 2019, 66, 104083.
[23]
T. Y. Huang,; M. He,; Y. M. Zhou,; S. W. Li,; B. B. Ding,; W. L. Pan,; S. Huang,; Y. Tong, Solvothermal fabrication of CoS nanoparticles anchored on reduced graphene oxide for high-performance microwave absorption. Synth. Met. 2017, 224, 46-55.
[24]
Z. M. Wei,; B. Li,; C. X. Xia,; Y. Cui,; J. He,; J. B. Xia,; J. B. Li, Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, 2, 1800094.
[25]
L. L. Liu,; S. Zhang,; F. Yan,; C. Y. Li,; C. L. Zhu,; X. T. Zhang,; Y. J. Chen, Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 14108-14115.
[26]
Y. F. Wang,; D. L. Chen,; X. Yin,; P. Xu,; F. Wu,; M. He, Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2015, 7, 26226-26234.
[27]
X. J. Zhang,; S. Li,; S. W. Wang,; Z. J. Yin,; J. Q. Zhu,; A. P. Guo,; G. S. Wang,; P. G. Yin,; L. Guo, Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high- performance microwave absorption in broadband. J. Phys. Chem. C 2016, 120, 22019-22027.
[28]
L. S. Xing,; X. Li,; Z. C. Wu,; X. F. Yu,; J. W. Liu,; L. Wang,; C. Y. Cai,; W. B. You,; G. Y. Chen,; J. J. Ding, et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.
[29]
W. D. Zhang,; X. Zhang,; Y. Zheng,; C. Guo,; M. Y. Yang,; Z. Li,; H. J. Wu,; H. Qiu,; H. X. Yan,; S. H. Qi, Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 2018, 1, 5865-5875.
[30]
Y. Cheng,; Y. Zhao,; H. Q. Zhao,; H. L. Lv,; X. D. Qi,; J. M. Cao,; G. B. Ji,; Y. W. Du, Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low- frequency and selective microwave response properties. Chem. Eng. J. 2019, 372, 390-398.
[31]
X. H. Liang,; X. M. Zhang,; W. Liu,; D. W. Tang,; B. S. Zhang,; G. B. Ji, A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J. Mater. Chem. C 2016, 4, 6816-6821.
[32]
M. Q. Ning,; M. M. Lu,; J. B. Li,; Z. Chen,; Y. K. Dou,; C. Z. Wang,; F. Rehman,; M. S. Cao,; H. B. Jin, Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734-15740.
[33]
R. L. Wang,; M. He,; Y. M. Zhou,; S. X. Nie,; Y. J. Wang,; W. Q. Liu,; Q. He,; W. T. Wu,; X. H. Bu,; X. M. Yang, Self-assembled 3D flower-like composites of heterobimetallic phosphides and carbon for temperature-tailored electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2019, 11, 38361-38371.
[34]
Q. Liao,; M. He,; Y. M. Zhou,; S. X. Nie,; Y. J. Wang,; S. C. Hu,; H. Y. Yang,; H. F. Li,; Y. Tong, Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2018, 10, 29136-29144.
[35]
J. J. Ding,; L. Wang,; Y. H. Zhao,; L. S. Xing,; X. F. Yu,; G. Y. Chen,; J. Zhang,; R. C. Che, Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.
[36]
L. Y. Liang,; G. J. Han,; Y. Li,; B. Zhao,; B. Zhou,; Y. Z. Feng,; J. M. Ma,; Y. M. Wang,; R. Zhang,; C. T. Liu, Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399-25409.
[37]
M. T. Qiao,; X. F. Lei,; Y. Ma,; L. D. Tian,; X. W. He,; K. H. Su,; Q. Y. Zhang, Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500-1519.
[38]
P. B Liu,; S. Gao,; X. D. Liu,; Y. Huang,; W. J. He,; Y. T. Li, Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. B Eng. 2020, 192, 107992.
[39]
L. X. Huang,; Y. P. Duan,; X. H. Dai,; Y. S. Zeng,; G. J. Ma,; Y. Liu,; S. H. Gao,; W. P. Zhang, Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.
[40]
C. W. Zhang,; Y. Peng,; Y. Song,; J. J. Li,; F. X. Yin,; Y. Yuan, Periodic three-dimensional nitrogen-doped mesoporous carbon spheres embedded with Co/Co3O4 nanoparticles toward microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 24102-24111.
[41]
F. L. Lai,; D. Y. Yong,; X. L. Ning,; B. C. Pan,; Y. E. Miao,; T. X. Liu, Bionanofiber assisted decoration of few-layered MoSe2 nanosheets on 3D conductive networks for efficient hydrogen evolution. Small 2017, 13, 1602866.
[42]
S. J. Deng,; C. Z. Ai,; M. Luo,; B. Liu,; Y. Zhang,; Y. H. Li,; S. W. Lin,; G. X. Pan,; Q. Xiong,; Q. Liu, et al. Coupled biphase (1T-2H)- MoSe2 on mold spore carbon for advanced hydrogen evolution reaction. Small 2019, 15, 1901796.
[43]
D. Xie,; X. H. Xia,; Y. Zhong,; Y. D. Wang,; D. H. Wang,; X. L. Wang,; J. P. Tu, Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv. Energy Mater. 2017, 7, 1601804.
[44]
Y. D. Yao,; N. Mahmood,; L. Pan,; G. Q. Shen,; R. R. Zhang,; R. J. Gao,; F. E. Aleem,; X. Y. Yuan,; X. W. Zhang,; J. J. Zou, Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale 2018, 10, 21327-21334.
[45]
F. E. Niu,; J. Yang,; N. N. Wang,; D. P. Zhang,; W. L. Fan,; J. Yang,; Y. T. Qian, MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.
[46]
M. A. Patel,; F. Luo,; M. R. Khoshi,; E. Rabie,; Q. Zhang,; C. R. Flach,; R. Mendelsohn,; E. Garfunkel,; M. Szostak,; H. X. He, P-doped porous carbon as metal free catalysts for selective aerobic oxidation with an unexpected mechanism. ACS Nano 2016, 10, 2305-2315.
[47]
G. J. Gou,; F. B. Meng,; H. G. Wang,; M. Jiang,; W. Wei,; Z. W. Zhou, Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 2019, 12, 1423-1429.
[48]
J. Q. Wang,; Y. Huyan,; Z. T. Yang,; A. B. Zhang,; Q. Y. Zhang,; B. L. Zhang, Tubular carbon nanofibers: Synthesis, characterization and applications in microwave absorption. Carbon 2019, 152, 255-266.
[49]
W. Q. Cao,; X. X. Wang,; J. Yuan,; W. Z. Wang,; M. S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017-10022.
[50]
P. He,; M. S. Cao,; J. C. Shu,; Y. Z. Cai,; X. X. Wang,; Q. L. Zhao,; J. Yuan, Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 2019, 11, 12535-12543.
[51]
Y. Tong,; M. He,; Y. M. Zhou,; S. X. Nie,; X. Zhong,; L. D. Fan,; T. Y. Huang,; Q. Liao,; Y. J. Wang, Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption. ACS Sustainable Chem. Eng. 2018, 6, 8212-8222.
[52]
B. Z. Dai,; B. Zhao,; X. Xie,; T. T. Su,; B. B. Fan,; R. Zhang,; R. Yang, Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 2018, 6, 5690-5697.
[53]
Y. Li,; X. F. Liu,; X. Y. Nie,; W. W. Yang,; Y. D. Wang,; R. H. Yu,; J. L. Shui, Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.
[54]
B. Quan,; X. H. Liang,; X. Zhang,; G. Y. Xu,; G. B. Ji,; Y. W. Du, Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 2018, 10, 41535-41543.
[55]
Y. Tong,; M. He,; Y. M. Zhou,; X. Zhong,; L. D. Fan,; T. Y. Huang,; Q. Liao,; Y. J. Wang, Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Appl. Surf. Sci. 2018, 434, 283-293.
[56]
Z. Zhang,; J. W. Tan,; W. H. Gu,; H. Q. Zhao,; J. Zheng,; B. S. Zhang,; G. B. Ji, Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.
[57]
P. B. Liu,; C. Y. Zhu,; S. Gao,; C. Guan,; Y. Huang,; W. J. He, N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020, 163, 348-359.
[58]
M. S. Cao,; W. L. Song,; Z. L. Hou,; B. Wen,; J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788-796.
[59]
J. C. Shu,; M. S. Cao,; M. Zhang,; X. X. Wang,; W. Q. Cao,; X. Y. Fang,; M. Q. Cao, Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.
Nano Research
Pages 738-746
Cite this article:
Xu Z, He M, Zhou Y, et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Research, 2021, 14(3): 738-746. https://doi.org/10.1007/s12274-020-3107-z
Topics:

936

Views

85

Crossref

0

Web of Science

85

Scopus

14

CSCD

Altmetrics

Received: 23 June 2020
Revised: 07 September 2020
Accepted: 09 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return