AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene

Xiaoqin Yang1,2,§Huy Q. Ta3,§Wei Li2,§Rafael G. Mendes3Yu Liu2Qitao Shi2Sami Ullah2Alicja Bachmatiuk3,4,5Jinping Luo1Lijun Liu1( )Jin-Ho Choi2( )Mark H. Rummeli2,3,4,6( )
School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China
Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Leibniz Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171 Dresden, Germany
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
Polish Center for Technology Development (PORT), Ul. Stabłowicka 147, Wrocław 54-066, Poland
Institute of Environmental Technology, VSB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic

§ Xiaoqin Yang, Huy Q. Ta, and Wei Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

There is ongoing research in freestanding single-atom thick elemental metal patches, including those suspended in a two-dimensional (2D) material, due to their utility in providing new structural and energetic insight into novel metallic 2D systems. Graphene pores have shown promise as support systems for suspending such patches. This study explores the potential of Sn atoms to form freestanding stanene and/or Sn patches in graphene pores. Sn atoms were deposited on graphene, where they formed novel single-atom thick 2D planar clusters/patches (or membranes) ranging from 1 to 8 atoms within the graphene pores. Patches of three or more atoms adopted either a star-like or close-packed structural configuration. Density functional theory (DFT) calculations were conducted to look at the cluster configurations and energetics (without the graphene matrix) and were found to deviate from experimental observations for 2D patches larger than five atoms. This was attributed to interfacial interactions between the graphene pore edges and Sn atoms. The presented findings help advance the development of single-atom thick 2D elemental metal membranes.

Electronic Supplementary Material

Download File(s)
12274_2020_3108_MOESM1_ESM.pdf (3.1 MB)

References

[1]
V. Kochat,; A. Samanta,; Y. Zhang,; S. Bhowmick,; P. Manimunda,; S. A. S. Asif,; A. S. Stender,; R. Vajtai,; A. K. Singh,; C. S. Tiwary, et al. Atomically thin gallium layers from solid-melt exfoliation. Sci. Adv. 2018, 4, e1701373.
[2]
C. H. Jin,; F. Lin,; K. Suenaga,; S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.
[3]
M. Corso,; W. Auwärter,; M. Muntwiler,; A. Tamai,; T. Greber,; J. Osterwalder, Boron nitride nanomesh. Science 2004, 303, 217-220.
[4]
C. R. Dean,; A. F. Young,; I. Meric,; C. Lee,; L. Wang,; S. Sorgenfrei,; K. Watanabe,; T. Taniguchi,; P. Kim,; K. L. Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[5]
L. Britnell,; R. V. Gorbachev,; R. Jalil,; B. D. Belle,; F. Schedin,; A. Mishchenko,; T. Georgiou,; M. I. Katsnelson,; L. Eaves,; S. V. Morozov, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947-950.
[6]
K. S. Novoselov,; D. Jiang,; F. Schedin,; T. J. Booth,; V. V. Khotkevich,; S. V. Morozov,; A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[7]
J. N. Coleman,; M. Lotya,; A. O’Neill,; S. D. Bergin,; P. J. King,; U. Khan,; K. Young,; A. Gaucher,; S. De,; R. J. Smith, et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[8]
K. K. Liu,; W. J. Zhang,; Y. H. Lee,; Y. C. Lin,; M. T. Chang,; C. Y. Su,; C. S. Chang,; H. Li,; Y. M. Shi,; H. Zhang, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.
[9]
H. P. Komsa,; A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 2012, 3, 3652-3656.
[10]
Y. J. Gong,; Z. Lin,; G. L. Ye,; G. Shi,; S. M. Feng,; Y. Lei,; A. L. Elías,; N. Perea-Lopez,; R. Vajtai,; H. Terrones, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 2015, 9, 11658-11666.
[11]
M. Chhowalla,; H. S. Shin,; G. Eda,; L. J. Li,; K. P. Loh,; H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[12]
L. M. Yang,; T. Frauenheim,; E. Ganz, The new dimension of silver. Phys. Chem. Chem. Phys. 2015, 17, 19695-19699.
[13]
L. M. Yang,; T. Frauenheim,; E. Ganz, Properties of the free-standing two-dimensional copper monolayer. J. Nanomater. 2016, 2016, 8429510.
[14]
S. Saxena,; R. P. Chaudhary,; S. Shukla, Stanene: Atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 2016, 6, 31073.
[15]
F. F. Zhu,; W. J. Chen,; Y. Xu,; C. L. Gao,; D. D. Guan,; C. H. Liu,; D. Qian,; S. C. Zhang,; J. F. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020-1025.
[16]
J. J. Deng,; B. Y. Xia,; X. C. Ma,; H. Q. Chen,; H. Shan,; X. F. Zhai,; B. Li,; A. D. Zhao,; Y. Xu,; W. H. Duan, et al. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 2018, 17, 1081-1086.
[17]
B. Lalmi,; H. Oughaddou,; H. Enriquez,; A. Kara,; S. Vizzini,; B. Ealet,; B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.
[18]
M. Houssa,; A. Dimoulas,; A. Molle, Silicene: A review of recent experimental and theoretical investigations. J. Phys. Condens. Matter 2015, 27, 253002.
[19]
E. Bianco,; S. Butler,; S. S. Jiang,; O. D. Restrepo,; W. Windl,; J. E. Goldberger, Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414-4421.
[20]
S. S. Jiang,; S. Butler,; E. Bianco,; O. D. Restrepo,; W. Windl,; J. E. Goldberger, Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 2014, 5, 3389.
[21]
J. Yuhara,; H. Shimazu,; K. Ito,; A. Ohta,; M. Araidai,; M. Kurosawa,; M. Nakatake,; G. Le Lay, Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111). ACS Nano 2018, 12, 11632-11637.
[22]
M. Fortin-Deschênes,; O. Waller,; T. O. Menteş,; A. Locatelli,; S. Mukherjee,; F. Genuzio,; P. L. Levesque,; A. Hébert,; R. Martel,; O. Moutanabbir, Synthesis of antimonene on germanium. Nano Lett. 2017, 17, 4970-4975.
[23]
J. Yuhara,; B. J. He,; N. Matsunami,; M. Nakatake,; G. Le Lay, Graphene’s latest cousin: Plumbene epitaxial growth on a “nano watercube”. Adv. Mater. 2019, 31, 1901017.
[24]
J. Zhao,; Q. M. Deng,; A. Bachmatiuk,; G. Sandeep,; A. Popov,; J. Eckert,; M. H. Rümmeli, Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 2014, 343, 1228-1232.
[25]
H. T. Quang,; A. Bachmatiuk,; A. Dianat,; F. Ortmann,; J. Zhao,; J. H. Warner,; J. Eckert,; G. Cunniberti,; M. H. Rümmeli, In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 2015, 9, 11408-11413.
[26]
K. B. Yin,; Y. Y. Zhang,; Y. L. Zhou,; L. T. Sun,; M. F. Chisholm,; S. T. Pantelides,; W. Zhou, Unsupported single-atom-thick copper oxide monolayers. 2D Mater. 2016, 4, 011001.
[27]
X. L. Wang,; C. Y. Wang,; C. J. Chen,; H. C. Duan,; K. Du, Free- standing monatomic thick two-dimensional gold. Nano Lett. 2019, 19, 4560-4566.
[28]
X. X. Zhao,; J. D. Dan,; J. Y. Chen,; Z. J. Ding,; W. Zhou,; K. P. Loh,; S. J. Pennycook, Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 2018, 30, 1707281.
[29]
Y. N. Liu,; N. Gao,; J. C. Zhuang,; C. Liu,; J. O. Wang,; W. C. Hao,; S. X. Dou,; J. J. Zhao,; Y. Du, Realization of strained stanene by interface engineering. J. Phys. Chem. Lett. 2019, 10, 1558-1565.
[30]
C. Z. Xu,; Y. H. Chan,; P. Chen,; X. X. Wang,; D. Flötotto,; J. A. Hlevyack,; G. Bian,; S. K. Mo,; M. Y. Chou,; T. C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111). Phys. Rev. B 2018, 97, 035122.
[31]
M. H. Liao,; Y. Y. Zang,; Z. Y. Guan,; H. W. Li,; Y. Gong,; K. J. Zhu,; X. P. Hu,; D. Zhang,; Y. Xu,; Y. Y. Wang, et al. Superconductivity in few-layer stanene. Nat. Phys. 2018, 14, 344-348.
[32]
Y. Xu,; B. H. Yan,; H. J. Zhang,; J. Wang,; G. Xu,; P. Z. Tang,; W. H. Duan,; S. C. Zhang, Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.
[33]
C. C. Liu,; H. Jiang,; Y. G. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.
[34]
H. Q. Ta,; L. Zhao,; W. J. Yin,; D. Pohl,; B. Rellinghaus,; T. Gemming,; B. Trzebicka,; J. Palisaitis,; G. Jing,; P. O. Å. Persson, et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405-2411.
[35]
A. W. Robertson,; B. Montanari,; K. He,; J. Kim,; C. S. Allen,; Y. A. Wu,; J. Olivier,; J. Neethling,; N. Harrison,; A. I. Kirkland, et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 2013, 13, 1468-1475.
[36]
M. S. Moreno,; R. F. Egerton,; P. A. Midgley, Differentiation of tin oxides using electron energy-loss spectroscopy. Phys. Rev. B 2004, 69, 233304.
[37]
D. C. Wei,; Y. Q. Liu,; Y. Wang,; H. L. Zhang,; L. P. Huang,; G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752-1758.
[38]
J. A. Rodríguez-Manzo,; O. Cretu,; F. Banhart, Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 2010, 4, 3422-3428.
[39]
J. Zhao,; Q. M. Deng,; S. M. Avdoshenko,; L. Fu,; J. Eckert,; M. H. Rümmeli, Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. USA 2014, 111, 15641-15646.
[40]
M. Maniraj,; B. Stadtmüller,; D. Jungkenn,; M. Düvel,; S. Emmerich,; W. Shi,; J. Stöckl,; L. Lyu,; J. Kollamana,; Z. Wei, et al. A case study for the formation of stanene on a metal surface. Commun. Phys. 2019, 2, 12.
[41]
J. Nevalaita,; P. Koskinen, Stability limits of elemental 2D metals in graphene pores. Nanoscale 2019, 11, 22019-22024.
[42]
S. Antikainen,; P. Koskinen, Growth of two-dimensional Au patches in graphene pores: A density-functional study. Comput. Mater. Sci. 2017, 131, 120-125.
[43]
S. Malola,; H. Häkkinen,; P. Koskinen, Gold in graphene: In-plane adsorption and diffusion. Appl. Phys. Lett. 2009, 94, 043106.
[44]
L. Pastewka,; S. Malola,; M. Moseler,; P. Koskinen, Li+ adsorption at prismatic graphite surfaces enhances interlayer cohesion. J. Power Sources 2013, 239, 321-325.
[45]
C. Z. Dong,; W. P. Zhu,; S. Y. Zhao,; P. Wang,; H. T. Wang,; W. Yang, Evolution of Pt clusters on graphene induced by electron irradiation. J. Appl. Mech. 2013, 80, 040904.
[46]
H. Q. Ta,; D. J. Perello,; D. L. Duong,; G. H. Han,; S. Gorantla,; V. L. Nguyen,; A. Bachmatiuk,; S. V. Rotkin,; Y. H. Lee,; M. H. Rümmeli, Stranski-Krastanov and Volmer-Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403-6410.
[47]
M. H. Rümmeli,; S. Gorantla,; A. Bachmatiuk,; J. Phieler,; N. Geißler,; I. Ibrahim,; J. B. Pang,; J. Eckert, On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861-4866.
[48]
L. Zhao,; H. Q. Ta,; A. Dianat,; A. Soni,; A. Fediai,; W. J. Yin,; T. Gemming,; B. Trzebicka,; G. Cuniberti,; Z. F. Liu, et al. In situ electron driven carbon nanopillar-fullerene transformation through Cr atom mediation. Nano Lett. 2017, 17, 4725-4732.
[49]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[50]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[51]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[52]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[53]
J. Klimeš,; D. R. Bowler,; A. Michaelides, Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2009, 22, 022201.
Nano Research
Pages 747-753
Cite this article:
Yang X, Ta HQ, Li W, et al. In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene. Nano Research, 2021, 14(3): 747-753. https://doi.org/10.1007/s12274-020-3108-y
Topics:

793

Views

17

Crossref

0

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 19 June 2020
Revised: 07 September 2020
Accepted: 10 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return