AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective CO2 conversion tuned by periodicities in Au8n + 4(TBBT)4n + 8 nanoclusters

Dan Yang1,§Wei Pei2,§Yuying Zhang1Weigang Hu1Xiao Cai1Yongnan Sun1Shuohao Li1Xinglian Cheng1Si Zhou2 ( )Jijun Zhao2Yan Zhu1Weiping Ding1Xu Liu1( )
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

§ Dan Yang and Wei Pei contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The structure-dependent catalytic behavior is one of the most important issues in catalysis science. However, it has not been fully understood how different types of atom-packing structures of heterogeneous catalysts precisely impact the reaction sites and pathways. Here we investigate a periodic series of Au8n + 4(TBBT)4n + 8 nanoclusters with layer-by-layer structural pattern to catalyze CO2 hydrogenation (where n = 3-6 is the number of (001) layers; TBBT = 4-tert-butyl-benzenethiolate). An encouraging evolution of CO2 conversion can be identified: The product selectivity from methanol, formic acid to ethanol can be switched by the structure-dependent deformation from the flattened, perfect, to elongated cuboids in Au8n + 4(TBBT)4n + 8. Through a combined study of experiment and theory, we demonstrate that the variation in structural patterns of catalysts can exclusively tune their adsorption strength with reaction intermediates and further control the CO2 conversion toward the different products.

Electronic Supplementary Material

Download File(s)
12274_2020_3117_MOESM1_ESM.pdf (6.5 MB)

References

[1]
P. D. Jadzinsky,; G. Calero,; C. J. Ackerson,; D. A. Bushnell,; R. D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430-433.
[2]
Z. Lei,; Q. M. Wang, Homo and heterometallic gold(I) clusters with hypercoordinated carbon. Coord. Chem. Eev. 2019, 378, 382-394.
[3]
S. S. Zhang,; F. Alkan,; H. F. Su,; C. M. Aikens,; C. H. Tung,; D. Sun. [Ag48(C≡CtBu)20(CrO4)7]: An atomically precise silver nanocluster Co-protected by inorganic and organic ligands. J. Am. Chem. Soc. 2019, 141, 4460-4467.
[4]
S. Li,; X. S. Du,; B. Li,; J. Y. Wang,; G. P. Li,; G. G. Gao,; S. Q. Zang, Atom-precise modification of silver(I) thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality. J. Am. Chem. Soc. 2018, 140, 594-597.
[5]
K. Y. Zheng,; V. Fung,; X. Yuan,; D. E. Jiang,; J. P. Xie, Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977-18983.
[6]
Y. Su,; T. T. Xue,; Y. X. Liu,; J. X. Qi,; R. C. Jin,; Z. K. Lin, Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 1251-1265.
[7]
S. Yamazoe,; T. Yoskamtorn,; S. Takano,; S. Yadnum,; J. Limtrakul,; T. Tsukuda, Controlled synthesis of carbon-supported gold clusters for rational catalyst design. Chem. Rec. 2016, 16, 2338-2348.
[8]
G. Salassa,; A. Sels,; F. Mancin,; T. Bürgi, Dynamic nature of thiolate monolayer in Au25(SR)18 nanoclusters. ACS Nano 2017, 11, 12609-12614.
[9]
R. C. Jin,; K. Nobusada, Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285-300.
[10]
N. A. Sakthivel,; S. Theivendran,; V. Ganeshraj,; A. G. Oliver,; A. Dass, Crystal structure of faradaurate-279: Au279(SPh-tBu)84 plasmonic nanocrystal molecules. J. Am. Chem. Soc. 2017, 139, 15450-15459.
[11]
M. Walter,; J. Akola,; O. Lopez-Acevedo,; P. D. Jadzinsky,; G. Calero,; C. J. Ackerson,; R. L. Whetten,; H. Grönbeck,; H. Häkkinen, A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157-9162.
[12]
X. Liu,; W. W. Xu,; X. Y. Huang,; E. D. Wang,; X. Cai,; Y. Zhao,; J. Li,; M. Xiao,; C. F. Zhang,; Y.; Gao, et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.
[13]
D. Yang,; W. Pei,; S. Zhou,; J. J. Zhao,; W. P. Ding,; Y. Zhu, Controllable conversion of CO2 on non-metallic gold clusters. Angew. Chem., Int. Ed. 2020, 59, 1919-1924.
[14]
X. Z. Lin,; H. J. Cong,; K. J. Sun,; X. M. Fu,; W. C. Kang,; X. L. Wang,; S. Y. Jin,; R. A. Wu,; C. Liu,; J. H. Huang, One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster. Nano Res. 2020, 13, 366-372.
[15]
Y. N. Sun,; E. D. Wang,; Y. J. Ren,; K. Xiao,; X. Liu,; D. Yang,; Y. Gao,; W. P. Ding,; Y. Zhu, The evolution in catalytic activity driven by periodic transformation in the inner sites of gold clusters. Adv. Funct. Mater. 2019, 29, 1904242.
[16]
H. Shen,; S. J. Xiang,; Z. Xu,; C. Liu,; X. H. Li,; C. F. Sun,; S. C. Lin,; B. K. Teo,; N. F. Zheng, Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908-1911.
[17]
F. Calle-Vallejo,; J. Tymoczko,; V. Colic,; Q. H. Vu,; M. D. Pohl,; K. Morgenstern,; D. Loffreda,; P. Sautet,; W. Schuhmann,; A. S. Bandarenka, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185-189.
[18]
S. H. Pang,; C. A. Schoenbaum,; D. K. Schwartz,; J. W. Medlin, Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 2013, 4, 2448.
[19]
C. J. Zeng,; H. F. Qian,; T. Li,; G. Li,; N. L. Rosi,; B. Yoon,; R. N. Barnett,; R. L. Whetten,; U. Landman,; R. C. Jin, Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114-13118.
[20]
Y. Zheng,; W. Q. Zheng,; Y. F. Li,; J. Chen,; B. Yu,; J. C. Wang,; L. Zhang,; J. J. Zhang, Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy 2017, 40, 512-539.
[21]
G. X. Lan,; Z. Lei,; S. S. Veroneau,; Y. Y. Zhu,; Z. W. Xu,; C. Wang,; W. B. Lin, Photosensitizing metal-organic layers for efficient sunlight- driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369-12373.
[22]
Z. H. Yan,; M. H. Du,; J. X. Liu,; S. Y. Jin,; C. Wang,; G. L. Zhuang,; X. J. Kong,; L. S. Long,; L. S. Zheng, Photo-generated dinuclear {Eu (II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nat. Commun. 2018, 9, 3353.
[23]
Z. H. He,; Q. L. Qian,; J. Ma,; Q. L. Meng,; H. C. Zhou,; J. L. Song,; Z. M. Liu,; B. X. Han, Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew. Chem., Int. Ed. 2016, 55, 737-741.
[24]
Q. G. Liu,; X. F. Yang,; L. Li,; S. Miao,; Y. Li,; Y. Q. Li,; X. K. Wang,; Y. Q. Huang,; T. Zhang, Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat. Commun. 2017, 8, 1407.
[25]
C. S. Yang,; S. H. Liu,; Y. N. Wang,; J. M. Song,; G. H. Wang,; S. Wang,; Z. J. Zhao,; R. T. Mu,; J. L. Gong, The interplay between structure and product selectivity of CO2 hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 11242-11247.
[26]
Y. H. Wang,; W. G. Gao,; K. Z. Li,; Y. N. Zheng,; Z. H. Xie,; W. Na,; J. G. Chen,; H. Wang, Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2. Chem 2020, 6, 419-430.
[27]
C. J. Zeng,; T. Li,; A. Das,; N. L. Rosi,; R. C. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011-10013.
[28]
C. J. Zeng,; Y. X. Chen,; K. Iida,; K. Nobusada,; K. Kirschbaum,; K. J. Lambright,; R. C. Jin, Gold quantum boxes: On the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 2016, 138, 3950-3953.
[29]
Z. K. Wu,; J. Suhan,; R. C. Jin, One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 2009, 19, 622-626.
[30]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[31]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[32]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[33]
S. Grimme,; J. Antony,; S. Ehrlich,; H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[34]
G. Henkelman,; B. P. Uberuaga,; H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
[35]
L. W. Liao,; C. H. Yao,; C. M. Wang,; S. B. Tian,; J. S. Chen,; M. B. Li,; N. Xia,; N. Yan,; Z. K. Wu, Quantitatively monitoring the size-focusing of Au nanoclusters and revealing what promotes the size transformation from Au44(TBBT)28 to Au36(TBBT)24. Anal. Chem. 2016, 88, 11297-11301.
[36]
V. Hody,; T. Belmonte,; C. D. Pintassilgo,; F. Poncin-Epaillard,; T. Czerwiec,; G. Henrion,; Y. Segui,; J. Loureiro, Modification of hexatriacontane by O2-N2 microwave post-discharges. Plasma Chem. Plasma Process. 2006, 26, 251-266.
[37]
C. T. Wang,; E. J. Guan,; L. Wang,; X. F. Chu,; Z. Y. Wu,; J. Zhang,; Z. Y. Yang,; Y. W. Jiang,; L. Zhang,; X. J. Meng, et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482-8488.
[38]
S. Kattel,; W. T. Yu,; X. F. Yang,; B. H. Yan,; A. Q. Huang,; W. M. Wan,; P. Liu,; J. G. Chen, CO2 hydrogenation over oxide-supported PtCo catalysts: The role of the oxide support in determining the product selectivity. Angew. Chem., Int. Ed. 2016, 55, 7968-7973.
[39]
L. X. Wang,; L. Wang,; J. Zhang,; X. L. Liu,; H. Wang,; W. Zhang,; Q. Yang,; J. Y. Ma,; X. Dong,; S. J. Yoo, et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104-6108.
[40]
S. X. Bai,; Q. Shao,; P. T. Wang,; Q. G. Dai,; X. Y. Wang,; X. Q. Huang, Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827-6830.
[41]
B. An,; Z. Li,; Y. Song,; J. Z. Zhang,; L. Z. Zeng,; C. Wang,; W. B. Lin, Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709-717.
[42]
F. Boccuzzi,; A. Chiorino,; M. Manzoli, FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surf. Sci. 2000, 454-456, 942-946.
[43]
G. A. Simms,; J. D. Padmos,; P. Zhang, Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: A XAS, L-DOS, and XPS study. J. Chem. Phys. 2009, 131, 214703.
[44]
L. B. Wang,; W. B. Zhang,; X. E. Zheng,; Y. Z. Chen,; W. L. Wu,; J. X. Qiu,; X. C. Zhao,; X. Zhao,; Y. Z. Dai,; J. Zeng, Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869-876.
[45]
K. L. Miller,; C. W. Lee,; J. L. Falconer,; J. W. Medlin, Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. J. Catal. 2010, 275, 294-299.
[46]
J. R. Ruiz-García,; J. C. Fierro-Gonzalez,; B. E. Handy,; L. Hinojosa- Reyes,; D. A. D. H. Del Río,; C. J. Lucio-Ortiz,; S. Valle-Cervantes,; G. A. Flores-Escamilla, An in situ infrared study of CO2 hydrogenation to formic acid by using rhodium supported on titanate nanotubes as catalysts. ChemistrySelect 2019, 4, 4206-4216.
[47]
J. Llorca,; N. Homs,; P. R. D. L. Piscina, In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. J. Catal. 2004, 227, 556-560.
[48]
F. Guzman,; S. S C. Chuang, Tracing the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on TiO2. J. Am. Chem. Soc. 2010, 132, 1502-1503.
Nano Research
Pages 807-813
Cite this article:
Yang D, Pei W, Zhang Y, et al. Selective CO2 conversion tuned by periodicities in Au8n + 4(TBBT)4n + 8 nanoclusters. Nano Research, 2021, 14(3): 807-813. https://doi.org/10.1007/s12274-020-3117-x
Topics:

728

Views

9

Crossref

0

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 12 July 2020
Revised: 15 August 2020
Accepted: 14 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return